A328200 Cubes of the form N^3 = concat(a,b,c) with N = a+b+c; a, b, c > 0.
512, 91125, 4181062131, 87824421125, 93824221184, 121213882349, 128711132649, 162324571375, 171323771464, 368910352448, 7890107061312, 171471879319616, 220721185826504, 470511577514952, 75460133084214033, 78330233506116032, 98316229404133819, 109294197946170875
Offset: 1
Examples
512^(1/3) = 8 = 5 + 1 + 2, 91125^(1/3) = 45 = 9 + 11 + 25, 4181062131^(1/3) = 1611 = 418 + 1062 + 131, ...
Links
- Giovanni Resta, Table of n, a(n) for n = 1..239
- NĂºmeros y algo mas, 9 + 11 + 25 = 91125^(1/3) etc, post on facebook.com, Sep 30 2019.
Crossrefs
Programs
-
PARI
is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(1)))} \\ A055642(n)=logint(n,10)+1 = #digits(n) for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, is(n,Ln)&& print1(n^3", ")))
Comments