This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328204 #62 Nov 15 2020 08:24:25 %S A328204 1,1,2,2,2,2,3,3,2,6,2,4,4,2,3,4,4,3,2,10,2,2,4,6,4,2,5,4,2,10,2,5,6, %T A328204 2,4,6,4,2,2,14,3,4,4,4,4,2,6,1,8,2,11,2,4,6,4,4,6,4,2,4,17,2,2,4,6,4, %U A328204 4,1,8,4,2,12,2,9,6,2,6,4,4,4,2,18,3,2,6 %N A328204 Numbers of quadruples contained in the divisors of A328149(n). %C A328204 A quadruple (x, y, z, w) of A328149 is a set of positive integers that satisfy x^3 + y^3 + z^3 = w^3. %H A328204 Michel Marcus, <a href="/A328204/b328204.txt">Table of n, a(n) for n = 1..10000</a> %e A328204 a(7) = 3 because the set of divisors of A328149(7) = 240: {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains the three quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive. %p A328204 with(numtheory): %p A328204 for n from 3 to 3000 do : %p A328204 d:=divisors(n):n0:=nops(d):it:=0: %p A328204 for i from 1 to n0-3 do: %p A328204 for j from i+1 to n0-2 do : %p A328204 for k from j+1 to n0-1 do: %p A328204 for m from k+1 to n0 do: %p A328204 if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 %p A328204 then %p A328204 it:=it+1: %p A328204 else %p A328204 fi: %p A328204 od: %p A328204 od: %p A328204 od: %p A328204 od: %p A328204 if it>0 then %p A328204 printf(`%d, `,it): %p A328204 else fi: %p A328204 od: %t A328204 nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^2; If[u > n^3, Break[]]; If[Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* program from _Giovanni Resta_ adapted for the sequence. See A330894 *) %o A328204 (PARI) isok(n) = {my(d=divisors(n), nb=0, m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), nb++););););); nb;} %o A328204 lista(nn) = my(m); for (n=1, nn, if (m=isok(n), print1(m, ", "))); \\ _Michel Marcus_, Nov 15 2020 %Y A328204 Cf. A027750, A096545, A328149, A330894. %K A328204 nonn %O A328204 1,3 %A A328204 _Michel Lagneau_, Jun 07 2020