A328205 Numbers m such that m and m+1 are consecutive factorial base Niven numbers (A118363).
1, 8, 26, 35, 90, 122, 244, 245, 300, 384, 440, 510, 722, 804, 844, 845, 935, 944, 984, 1014, 1079, 1224, 1232, 1444, 1445, 1518, 1584, 1589, 1727, 1728, 1736, 1770, 1880, 2159, 2184, 2232, 2240, 2528, 2540, 2650, 2820, 2980, 3032, 3263, 3640, 4199, 4328, 4848
Offset: 1
Examples
8 is in the sequence since both 8 and 9 are in A118363. A034968(8) = 2 is a divisor of 8 and A034968(9) = 3 is a divisor of 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Dahlenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quarterly, Vol. 56, No. 2 (2018), pp. 163-166; alternative link.
Programs
-
Mathematica
sf[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; n - s]; fnQ[n_] := Divisible[n, sf[n]]; aQ[n_] := AllTrue[n + Range[0, 1], fnQ]; Select[Range[5000], aQ] (* after Jean-François Alcover at A034968 *)
Comments