A328207 Starts of runs of 4 consecutive factorial base Niven numbers (A118363).
9320542, 11397166, 29048470, 29394574, 40469902, 40816006, 58467310, 72657574, 84079006, 101730310, 178911502, 200716054, 283088806, 479329774, 485213542, 499403806, 528476542, 530553166, 544743430, 559625902, 559972006, 574162270, 603235006, 617425270, 641652550
Offset: 1
Examples
9320542 is in the sequence since 9320542, 9320543, 9320544 and 9320545 are all in A118363: A034968(9320542) = 22 is a divisor of 9320542, A034968(9320543) = 23 is a divisor of 9320543, A034968(9320544) = 18 is a divisor of 9320544, and A034968(9320545) = 19 is a divisor of 9320545.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..512
- Paul Dahlenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quarterly, Vol. 56, No. 2 (2018), pp. 163-166; alternative link. [Wayback Machine link]
Programs
-
Mathematica
sf[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; n - s]; fnQ[n_] := Divisible[n, sf[n]]; aQ[n_] := AllTrue[n + Range[0, 3], fnQ]; Select[Range[10^8], aQ] (* after Jean-François Alcover at A034968 *)
Comments