This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328208 #9 Jan 05 2025 19:51:41 %S A328208 1,2,3,4,5,6,8,10,12,13,14,16,18,21,22,24,26,27,30,34,36,42,45,48,55, %T A328208 56,58,60,66,68,69,72,76,78,80,81,84,89,90,92,93,94,96,99,102,105,108, %U A328208 110,111,116,120,126,132,135,140,144,146,150,152,153,156,159,162 %N A328208 Zeckendorf-Niven numbers: numbers divisible by the number of terms in their Zeckendorf representation (A007895). %D A328208 Andrew Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005. %H A328208 Robert Israel, <a href="/A328208/b328208.txt">Table of n, a(n) for n = 1..10000</a> %H A328208 Helen G. Grundman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/45-3/grundman.pdf">Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers</a>, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276. %H A328208 Andrew Ray and Curtis Cooper, <a href="http://cs.ucmo.edu/~cnc8851/articles/kzeckniven.pdf">On the natural density of the k-Zeckendorf Niven numbers</a>, J. Inst. Math. Comput. Sci. Math., Vol. 19 (2006), pp. 83-98. %e A328208 12 is in the sequence since A007895(12) = 3 and 3 is a divisor of 12. %p A328208 fib:= combinat:-fibonacci: %p A328208 phi:= 1/2 + sqrt(5)/2: %p A328208 fibapp:= n -> phi^n/sqrt(5): %p A328208 invfib := proc(x::posint) %p A328208 local q, n; %p A328208 q:= evalf((ln(x+1/2) + ln(5)/2)/ln(phi)); %p A328208 n:= floor(q); %p A328208 if fib(n) <= x then %p A328208 while fib(n+1) <= x do %p A328208 n := n+1 %p A328208 end do %p A328208 else %p A328208 while fib(n) > x do %p A328208 n := n-1 %p A328208 end do %p A328208 end if; %p A328208 n %p A328208 end proc: %p A328208 zeck:= proc(x) local n; %p A328208 if x = 0 then 0 %p A328208 else %p A328208 n:= invfib(x); %p A328208 F[n] + zeck(x-fib(n)); %p A328208 fi %p A328208 end proc: %p A328208 filter:= n -> n mod nops(zeck(n)) = 0: %p A328208 select(filter, [$1..200]); # _Robert Israel_, Oct 25 2019 %t A328208 z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; aQ[n_] := Divisible[n, z[n]]; Select[Range[1000], aQ] (* after _Alonso del Arte_ at A007895 *) %Y A328208 Cf. A005349, A007895. %K A328208 nonn %O A328208 1,2 %A A328208 _Amiram Eldar_, Oct 07 2019