A328209 Numbers m such that m and m+1 are consecutive Zeckendorf-Niven numbers (A328208).
1, 2, 3, 4, 5, 12, 13, 21, 26, 55, 68, 80, 89, 92, 93, 110, 152, 183, 195, 207, 233, 236, 237, 254, 291, 304, 327, 364, 377, 380, 381, 398, 435, 471, 484, 555, 584, 605, 609, 639, 644, 759, 795, 834, 875, 894, 930, 987, 992, 1004, 1011, 1028, 1047, 1076, 1220
Offset: 1
Keywords
Examples
12 is in the sequence since both 12 and 13 are in A328208: A007895(12) = 3 is a divisor of 12, and A007895(13) = 1 is a divisor of 13.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Helen G. Grundman, Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.
Programs
-
Mathematica
z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; aQ[n_] := Divisible[n, z[n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[aQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s (* after Alonso del Arte at A007895 *)