cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328211 Starts of runs of 4 consecutive Zeckendorf-Niven numbers (A328208).

Original entry on oeis.org

1, 2, 3, 123543, 124242, 545502, 1367583, 1856349, 2431230, 2465110, 2593590, 2783709, 3247389, 3479229, 3917823, 3942909, 4174749, 4303428, 4494390, 4920640, 5143830, 5710383, 6261309, 6493149, 6552903, 6956829, 7420509, 7470880, 8970948, 9107790, 9507069, 10952928
Offset: 1

Views

Author

Amiram Eldar, Oct 07 2019

Keywords

Comments

Grundman proved that this sequence is infinite by showing the F(120k-6) + F(8) + F(6) + F(4) is a term for all k >= 1, where F(k) is the k-th Fibonacci number.
She also proved that the only starts of runs of 5 consecutive Zeckendorf-Niven numbers are 1 and 2.

Examples

			1 is in the sequence since 1, 2, 3 and 4 are in A328208: A007895(1) = 1 is a divisor of 1, A007895(2) = 1 is a divisor of 2, A007895(3) = 1 is a divisor of 3, and A007895(4) = 2 is a divisor of 4.
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; aQ[n_] := Divisible[n, z[n]]; c = 0; k = 1; s = {}; v = Table[-1, {4}]; While[c < 32, If[aQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 3]]]; k++]; s (* after Alonso del Arte at A007895 *)