A328211 Starts of runs of 4 consecutive Zeckendorf-Niven numbers (A328208).
1, 2, 3, 123543, 124242, 545502, 1367583, 1856349, 2431230, 2465110, 2593590, 2783709, 3247389, 3479229, 3917823, 3942909, 4174749, 4303428, 4494390, 4920640, 5143830, 5710383, 6261309, 6493149, 6552903, 6956829, 7420509, 7470880, 8970948, 9107790, 9507069, 10952928
Offset: 1
Keywords
Examples
1 is in the sequence since 1, 2, 3 and 4 are in A328208: A007895(1) = 1 is a divisor of 1, A007895(2) = 1 is a divisor of 2, A007895(3) = 1 is a divisor of 3, and A007895(4) = 2 is a divisor of 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..216
- Helen G. Grundman, Consecutive Zeckendorf-Niven and lazy-Fibonacci-Niven numbers, Fibonacci Quarterly, Vol. 45, No. 3 (2007), pp. 272-276.
Programs
-
Mathematica
z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; aQ[n_] := Divisible[n, z[n]]; c = 0; k = 1; s = {}; v = Table[-1, {4}]; While[c < 32, If[aQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 3]]]; k++]; s (* after Alonso del Arte at A007895 *)
Comments