cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328219 LCM of the prime indices of n, all plus 1.

This page as a plain text file.
%I A328219 #12 Oct 18 2019 16:44:41
%S A328219 1,2,3,2,4,6,5,2,3,4,6,6,7,10,12,2,8,6,9,4,15,6,10,6,4,14,3,10,11,12,
%T A328219 12,2,6,8,20,6,13,18,21,4,14,30,15,6,12,10,16,6,5,4,24,14,17,6,12,10,
%U A328219 9,22,18,12,19,12,15,2,28,6,20,8,30,20,21,6,22,26
%N A328219 LCM of the prime indices of n, all plus 1.
%C A328219 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A328219 a(n) = A290103(A003961(n)).
%F A328219 If n = A000040(i_1) * ... * A000040(i_k), then a(n) = lcm(1+i_1,...,1+i_k).
%t A328219 Table[If[n==1,1,LCM@@(PrimePi/@First/@FactorInteger[n]+1)],{n,100}]
%o A328219 (PARI)
%o A328219 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
%o A328219 A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
%o A328219 A328219(n) = A290103(A003961(n)); \\ _Antti Karttunen_, Oct 18 2019
%Y A328219 Sorted positions of first appearances are A328451.
%Y A328219 LCM of prime indices is A290103.
%Y A328219 LCM of prime indices minus 1 is A328456.
%Y A328219 GCD of prime indices plus 1 is A328169.
%Y A328219 Partitions whose parts plus 1 are relatively prime are A318980.
%Y A328219 Numbers whose prime indices plus 1 are relatively prime are A318981,
%Y A328219 Cf. A003961, A056239, A112798, A258409, A289508, A289509, A328167, A328168.
%K A328219 nonn
%O A328219 1,2
%A A328219 _Gus Wiseman_, Oct 16 2019