cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328221 Number of integer partitions of n with at least one pair of consecutive divisible parts.

This page as a plain text file.
%I A328221 #4 Oct 16 2019 08:45:35
%S A328221 0,0,1,2,4,5,10,12,20,26,38,51,73,92,126,166,219,283,369,470,604,763,
%T A328221 968,1217,1534,1907,2376,2944,3640,4476,5501,6723,8212,9986,12130,
%U A328221 14682,17748,21376,25717,30847,36959,44152,52688,62714,74557,88440,104775,123878
%N A328221 Number of integer partitions of n with at least one pair of consecutive divisible parts.
%C A328221 Includes all non-strict partitions.
%e A328221 The a(2) = 1 through a(8) = 20 partitions:
%e A328221   (11)  (21)   (22)    (41)     (33)      (61)       (44)
%e A328221         (111)  (31)    (221)    (42)      (322)      (62)
%e A328221                (211)   (311)    (51)      (331)      (71)
%e A328221                (1111)  (2111)   (222)     (421)      (332)
%e A328221                        (11111)  (321)     (511)      (422)
%e A328221                                 (411)     (2221)     (431)
%e A328221                                 (2211)    (3211)     (521)
%e A328221                                 (3111)    (4111)     (611)
%e A328221                                 (21111)   (22111)    (2222)
%e A328221                                 (111111)  (31111)    (3221)
%e A328221                                           (211111)   (3311)
%e A328221                                           (1111111)  (4211)
%e A328221                                                      (5111)
%e A328221                                                      (22211)
%e A328221                                                      (32111)
%e A328221                                                      (41111)
%e A328221                                                      (221111)
%e A328221                                                      (311111)
%e A328221                                                      (2111111)
%e A328221                                                      (11111111)
%t A328221 Table[Length[Select[IntegerPartitions[n],MatchQ[#,{___,x_,y_,___}/;Divisible[x,y]]&]],{n,0,30}]
%Y A328221 The complement is counted by A328171.
%Y A328221 Partitions whose consecutive parts are relatively prime are A328172.
%Y A328221 Partitions with no pair of consecutive parts relatively prime are A328187.
%Y A328221 Numbers without consecutive divisible proper divisors are A328028.
%Y A328221 Cf. A000837, A018783, A328026, A328161, A328188, A328189, A328194, A328220.
%K A328221 nonn
%O A328221 0,4
%A A328221 _Gus Wiseman_, Oct 15 2019