This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328221 #4 Oct 16 2019 08:45:35 %S A328221 0,0,1,2,4,5,10,12,20,26,38,51,73,92,126,166,219,283,369,470,604,763, %T A328221 968,1217,1534,1907,2376,2944,3640,4476,5501,6723,8212,9986,12130, %U A328221 14682,17748,21376,25717,30847,36959,44152,52688,62714,74557,88440,104775,123878 %N A328221 Number of integer partitions of n with at least one pair of consecutive divisible parts. %C A328221 Includes all non-strict partitions. %e A328221 The a(2) = 1 through a(8) = 20 partitions: %e A328221 (11) (21) (22) (41) (33) (61) (44) %e A328221 (111) (31) (221) (42) (322) (62) %e A328221 (211) (311) (51) (331) (71) %e A328221 (1111) (2111) (222) (421) (332) %e A328221 (11111) (321) (511) (422) %e A328221 (411) (2221) (431) %e A328221 (2211) (3211) (521) %e A328221 (3111) (4111) (611) %e A328221 (21111) (22111) (2222) %e A328221 (111111) (31111) (3221) %e A328221 (211111) (3311) %e A328221 (1111111) (4211) %e A328221 (5111) %e A328221 (22211) %e A328221 (32111) %e A328221 (41111) %e A328221 (221111) %e A328221 (311111) %e A328221 (2111111) %e A328221 (11111111) %t A328221 Table[Length[Select[IntegerPartitions[n],MatchQ[#,{___,x_,y_,___}/;Divisible[x,y]]&]],{n,0,30}] %Y A328221 The complement is counted by A328171. %Y A328221 Partitions whose consecutive parts are relatively prime are A328172. %Y A328221 Partitions with no pair of consecutive parts relatively prime are A328187. %Y A328221 Numbers without consecutive divisible proper divisors are A328028. %Y A328221 Cf. A000837, A018783, A328026, A328161, A328188, A328189, A328194, A328220. %K A328221 nonn %O A328221 0,4 %A A328221 _Gus Wiseman_, Oct 15 2019