This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328250 #17 Oct 13 2019 18:08:42 %S A328250 4,8,1,12,2,9,16,3,18,50,20,5,25,99,306,24,6,45,125,549,5831,27,7,49, %T A328250 207,1611,6849,20230,28,10,63,343,2662,14225,33026,52283,32,11,75,375, %U A328250 2842,16299,47107,225998,286891,36,13,90,531,2891,19431,49806,1336047,1292750,10820131,40,14,98,686,4575,21231,117649,1422275,2886982,21628098,38452606 %N A328250 Square array A(n,k) read by descending antidiagonals where A(n,k) is the k-th solution x to A328248(x) = n-1. %C A328250 Row 1 of the array is reserved for numbers for which no squarefree number is ever reached, and from then on, each row n > 1 of array gives in ascending order all natural numbers that require n-2 iterations of arithmetic derivative (A003415) to reach a squarefree number. Squarefree numbers (A005117) thus occupy the row 2, as they require no iterations. %H A328250 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A328250 The upper left corner of the array: %e A328250 4, 8, 12, 16, 20, 24, 27, 28, %e A328250 1, 2, 3, 5, 6, 7, 10, 11, %e A328250 9, 18, 25, 45, 49, 63, 75, 90, %e A328250 50, 99, 125, 207, 343, 375, 531, 686, %e A328250 306, 549, 1611, 2662, 2842, 2891, 4575, 4802, %e A328250 5831, 6849, 14225, 16299, 19431, 21231, 22638, 24010, %e A328250 20230, 33026, 47107, 49806, 117649, 121671, 145386, 162707, %e A328250 52283, 225998, 1336047, 1422275, 1500759, 1576899, 2309503, 3023398, %e A328250 286891, 1292750, 2886982, 3137526, 6882453, 8703459, 15358457, 16777114, %e A328250 10820131, 21628098, 23934105, 24332763, 46295435, 51320698, 52320191, 56199375, %e A328250 38452606, ... %e A328250 ... %o A328250 (PARI) %o A328250 up_to = 45; \\ 10585 = binomial(145+1,2) %o A328250 A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); %o A328250 A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); }; %o A328250 memoA328250sq = Map(); %o A328250 A328250sq(n, k) = { my(v=0); if(!mapisdefined(memoA328250sq,[n,k-1],&v),if(1==k, v=0, v = A328250sq(n, k-1))); for(i=1+v,oo,if((1+A328248(i))==n,mapput(memoA328250sq,[n,k],i); return(i))); }; %o A328250 A328250list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A328250sq(col,(a-(col-1))))); (v); }; %o A328250 v328250 = A328250list(up_to); %o A328250 A328250(n) = v328250[n]; %Y A328250 Cf. A003415, A328248. %Y A328250 Column 1: A328302. %Y A328250 Rows 1 - 4 are: A328251, A005117, A328252, A328253. %K A328250 nonn,tabl %O A328250 1,1 %A A328250 _Antti Karttunen_, Oct 12 2019