cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328253 Nonsquarefree numbers whose first arithmetic derivative (A003415) is not squarefree, but the second derivative (A068346) is.

This page as a plain text file.
%I A328253 #8 Oct 11 2019 16:55:49
%S A328253 50,99,125,207,343,375,531,686,725,747,750,819,875,931,1083,1175,1331,
%T A328253 1375,1750,1775,1899,2057,2058,2075,2197,2250,2299,2331,2367,2499,
%U A328253 2525,2625,2750,2853,3250,3425,3430,3577,3610,3771,3789,3843,3875,4059,4149,4250,4311,4394,4459,4475,4626,4693,4750,4775,4875,4913,4998,5145
%N A328253 Nonsquarefree numbers whose first arithmetic derivative (A003415) is not squarefree, but the second derivative (A068346) is.
%H A328253 Antti Karttunen, <a href="/A328253/b328253.txt">Table of n, a(n) for n = 1..10000</a>
%e A328253 50 (= 2 * 5^2) is not squarefree, and its first derivative A003415(50) = 45 = 3^2 * 5 also is not squarefree, but taking derivative yet again, gives A003415(45) = 39 = 3*13, which is squarefree, thus 50 is included in this sequence.
%o A328253 (PARI)
%o A328253 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A328253 isA328253(n) = if(issquarefree(n), 0, my(u=A003415(n)); if(issquarefree(u),0, issquarefree(A003415(u))));
%o A328253 (PARI)
%o A328253 A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
%o A328253 A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
%o A328253 isA328253(n) = (3==A328248(n));
%Y A328253 Cf. A003415, A328251.
%Y A328253 Row 4 of array A328250. Indices of 3's in A328248.
%Y A328253 Setwise difference A328245 \ A005117. Intersection of A013929 and A328245.
%K A328253 nonn
%O A328253 1,1
%A A328253 _Antti Karttunen_, Oct 11 2019