This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328258 #28 Feb 16 2025 08:33:58 %S A328258 1,-1,4,-3,6,-4,8,-7,10,-6,12,-12,14,-8,24,-15,18,-10,20,-18,32,-12, %T A328258 24,-28,26,-14,28,-24,30,-24,32,-31,48,-18,48,-30,38,-20,56,-42,42, %U A328258 -32,44,-36,60,-24,48,-60,50,-26,72,-42,54,-28,72,-56,80,-30,60,-72,62,-32,80,-63,84 %N A328258 a(n) = Sum_{d|n, gcd(d,n/d) = 1} (-1)^(d + 1) * d. %C A328258 Excess of sum of odd unitary divisors of n over sum of even unitary divisors of n. %C A328258 a(n) = n+1 iff n is in A061345 \ {1}. - _Bernard Schott_, Mar 05 2023 %H A328258 Robert Israel, <a href="/A328258/b328258.txt">Table of n, a(n) for n = 1..10000</a> %H A328258 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a>. %F A328258 If n = Product (p_j^k_j) then a(n) = Product (1 - (-1)^p_j * p_j^k_j). %F A328258 If n odd, a(n) = usigma(n), where usigma = A034448. %F A328258 Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(14*zeta(3)) = A306633 / 14 = 0.0977451... . - _Amiram Eldar_, Nov 17 2022 %F A328258 From _Amiram Eldar_, Jan 28 2023: (Start) %F A328258 a(n) = 2 * A192066(n) - A034448(n). %F A328258 a(n) = A192066(n) - A360156(n/2) if n is even, and A192066(n) otherwise. %F A328258 Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(2*s)-2^(s+2)+2)/(2^(2*s)-2). (End) %p A328258 f:= proc(n) local t; %p A328258 mul(1 - (-1)^t[1] * t[1]^t[2], t=ifactors(n)[2]) %p A328258 end proc: %p A328258 map(f, [$1..100]); # _Robert Israel_, Oct 10 2019 %t A328258 a[n_] := Sum[Boole[GCD[d, n/d] == 1] (-1)^(d + 1) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 65}] %t A328258 a[1] = 1; a[n_] := Times @@ (1 - (-1)^First[#] First[#]^Last[#] & /@ FactorInteger[n]); Table[a[n], {n, 1, 65}] %o A328258 (Magma) [&+[(-1)^(d+1)*d:d in Divisors(n)|Gcd(d, n div d) eq 1]:n in [1..70]]; // _Marius A. Burtea_, Oct 10 2019 %o A328258 (PARI) a(n) = sumdiv(n, d, if (gcd(d,n/d) == 1, (-1)^(d + 1) * d)); \\ _Michel Marcus_, Oct 10 2019 %Y A328258 Cf. A002129, A034448, A077610, A109712, A192066, A254503, A306633, A360156. %K A328258 sign,mult,look %O A328258 1,3 %A A328258 _Ilya Gutkovskiy_, Oct 09 2019