A328264 a(n) is the least prime p such that prime(n) divides the sum of n consecutive primes starting with p.
2, 5, 2, 37, 83, 17, 7, 23, 13, 67, 163, 821, 227, 7, 13, 151, 599, 643, 271, 2, 83, 19, 83, 1069, 61, 37, 823, 263, 23, 857, 89, 1931, 139, 181, 71, 239, 1861, 739, 487, 37, 1237, 3833, 37, 6961, 1709, 499, 587, 271, 2687, 359, 5, 727, 73, 491, 73, 41, 3989, 797, 2083, 1451, 199, 349, 2027, 2441
Offset: 1
Keywords
Examples
a(4)=37 because prime(4)=7 divides the sum of 4 consecutive primes starting with 37 (37+41+43+47=168), but does not divide any earlier sum of 4 consecutive primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..9332
Crossrefs
Cf. A024011 (a(n)=2).
Programs
-
Maple
P:= [0,seq(ithprime(i),i=1..100000)]: S:= ListTools:-PartialSums(P): f:= proc(n) local p,k; p:= ithprime(n); for k from 1 to nops(S)-n do if S[k+n]-S[k] mod p = 0 then return P[k+1] fi od; FAIL end proc: map(f, [$1..200]);
-
Mathematica
a[n_] := Block[{m=Prime@n, s=Sum[Prime@i, {i, n}], p=2, q}, q=m; While[Mod[s, m] > 0, s-=p; {p, q} = NextPrime@{p, q}; s+=q]; p]; Array[a, 70] (* Giovanni Resta, Oct 10 2019 *)
Comments