cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328269 Number of walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).

This page as a plain text file.
%I A328269 #26 Oct 15 2020 12:37:33
%S A328269 1,3,26,343,5594,103730,2094028,44889351,1006126370,23337166962,
%T A328269 556199376622,13550764116530,336190200180652,8468872074477060,
%U A328269 216120719672921820,5577150906683145103,145324963753397617230,3819107708757101038562,101122686499165125017886
%N A328269 Number of walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).
%H A328269 Alois P. Heinz, <a href="/A328269/b328269.txt">Table of n, a(n) for n = 0..639</a>
%H A328269 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a>
%H A328269 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>
%F A328269 a(n) = A328300(2n,n).
%F A328269 a(n) is odd <=> n in { A000225 }.
%F A328269 a(n) ~ c * 2^(3*n) * (2 + sqrt(3))^n / n^2, where c =
%F A328269 0.081957778985952080274457799679795068000445171394180053136120884510526907545... - _Vaclav Kotesovec_, May 10 2020
%e A328269 a(1) = 3: [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
%e A328269 a(2) = 26: [(0,0,0),(1,0,0),(2,0,0),(1,1,1),(0,2,2)], [(0,0,0),(1,0,0),(1,1,0),(1,1,1),(0,2,2)], ..., [(0,0,0),(0,0,1),(0,1,1),(0,1,2),(0,2,2)], [(0,0,0),(0,0,1),(0,0,2),(0,1,2),(0,2,2)].
%p A328269 b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
%p A328269       add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
%p A328269       sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
%p A328269     end:
%p A328269 a:= n-> b([0, n$2]):
%p A328269 seq(a(n), n=0..23);
%t A328269 b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
%t A328269 a[n_] := b[{0, n, n}];
%t A328269 a /@ Range[0, 23] (* _Jean-François Alcover_, May 12 2020, after Maple *)
%Y A328269 Bisection (even part) of A328280.
%Y A328269 Cf. A000225, A000984, A277262, A328270, A328300.
%K A328269 nonn,walk
%O A328269 0,2
%A A328269 _Alois P. Heinz_, Oct 10 2019