cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328270 Total number of nodes in all walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).

This page as a plain text file.
%I A328270 #16 May 13 2020 18:58:21
%S A328270 1,9,130,2401,50346,1141030,27222364,673340265,17104148290,
%T A328270 443406172278,11680186909062,311667574680190,8404755004516300,
%U A328270 228659546010880620,6267500870514732780,172891678107177498193,4795723803862121368590,133668769806498536349670
%N A328270 Total number of nodes in all walks on cubic lattice starting at (0,0,0), ending at (0,n,n), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).
%H A328270 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a>
%H A328270 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>
%F A328270 a(n) = (2n+1) * A328269(n).
%F A328270 a(n) is odd <=> n in { A000225 }.
%e A328270 a(1) = 9: nodes in [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
%p A328270 b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
%p A328270       add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
%p A328270       sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
%p A328270     end:
%p A328270 a:= n-> (2*n+1)*b([0, n$2]):
%p A328270 seq(a(n), n=0..23);
%t A328270 b[l_] := b[l] = If[Last[l] == 0, 1, Function[r, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, r}, {j, r}, {k, r}]][{-1, 0, 1}]];
%t A328270 a[n_] := (2n+1) b[{0, n, n}];
%t A328270 a /@ Range[0, 23] (* _Jean-François Alcover_, May 13 2020, after Maple *)
%Y A328270 Cf. A000225, A328269.
%K A328270 nonn,walk
%O A328270 0,2
%A A328270 _Alois P. Heinz_, Oct 10 2019