This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328277 #22 Dec 23 2024 14:53:46 %S A328277 304,153,157,197,124,97,221,156,69,171,73,88,142,68,69,129,73,81,86, %T A328277 62,46,189,88,40,67,48,51,24,89,80,77,31,63,68,41,20,0,132,80,90,58, %U A328277 32,63,99,37,0,106,69,79,50,30,45,30,38,0,76,0,96,31,62,54,27,31,49,41,27,84,72,0,31,58,47,26,23,34,43,25,20 %N A328277 Triangle T(m,n) = # { k | concat(mk,nk) has no digit twice or more }, m > n > 0. %C A328277 Row m has columns numbered n = 1 .. m-1, with m >= 2. %C A328277 For an extension to m >= n >= 0, see A328288, and A328287 for column 0. %C A328277 One consider T(m,n) defined for all m, n >= 0, which would yield a symmetric, infinite square array T(m,n), see formula. %C A328277 The table is finite in the sense that T(m,n) = 0 for m > 987654321 (even if the multiple isn't pandigital, (mk, nk) cannot have more than 9+1 distinct digits), but also whenever the total number of digits of m and n exceeds 10. %H A328277 M. F. Hasler, in reply to E. Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2019-October">Fractions with no repeated digits</a>, SeqFan list, Oct. 10, 2020. %F A328277 T(m,n) = 0 whenever m = n (mod 10). %F A328277 T(m,n) = T(n,m) for all m, n >= 0, if the condition m > n is dropped. %e A328277 The table reads: %e A328277 304, (m=2) %e A328277 153, 157, %e A328277 197, 124, 97, %e A328277 221, 156, 69, 171, %e A328277 73, 88, 142, 68, 69, %e A328277 129, 73, 81, 86, 62, 46, %e A328277 189, 88, 40, 67, 48, 51, 24, %e A328277 89, 80, 77, 31, 63, 68, 41, 20, %e A328277 0, 132, 80, 90, 58, 32, 63, 99, 37, %e A328277 0, 106, 69, 79, 50, 30, 45, 30, 38, 0, (m = 11) %e A328277 76, 0, 96, 31, 62, 54, 27, 31, 49, 41, 27, %e A328277 84, 72, 0, 31, 58, 47, 26, 23, 34, 43, 25, 20, %e A328277 100, 64, 52, 0, 51, 44, 51, 42, 22, 38, 27, 18, 20 %e A328277 ... %e A328277 The terms corresponding to T(2,1) = 304 and T(3,1) = 153 are given in Eric Angelini's post to the SeqFan list. %e A328277 T(8,7) = 24 = #{1, 5, 7, 9, 12, 51, 71, 76, 105, 107, 122, 128, 132, 134, 262, 627, 674, 853, 1172, 1188, 1282, 1321, 2622, 5244}: For these numbers k, 8k and 7k don't share any digit and have no digit twice; e.g., 5244*(8,7) = (41952, 36708). %o A328277 (PARI) A328277(m,n)={my(S,s); for(L=1,10,S<(S+=sum( k=10^(L-1),10^L-1, #Set(Vecsmall(s=Str(m*k, n*k)))==#s))||L<3||return(S))} \\ Using concat(digits...) would take about 50% more time. %Y A328277 Cf. A328288 (variant m >= n >= 0), A328287 (column 0). %K A328277 nonn,base,tabl,fini %O A328277 2,1 %A A328277 _M. F. Hasler_, Oct 10 2019