A328279 Smallest elements of the cycles of (iterations of) A329623: n -> |concat(sum of adjacent digits of n) - n|.
1, 2, 3, 4, 5, 6, 7, 8, 9, 182, 273, 364, 455, 1728, 2637, 3546, 4455, 17182, 26273, 35364, 44455, 171728, 262637, 353546, 444455, 1717182, 2626273, 3535364, 4444455, 17171728, 26262637, 35353546, 44444455, 171717182, 262626273, 353535364, 444444455, 1717171728, 2626262637, 3535353546
Offset: 1
Examples
The single-digit numbers 1, ..., 9 as well as numbers f(k) = 4*(10^k-1)/9 + 11, k >= 3, are fixed points of A329623. Indeed, A053392(f(k)) = A053392(4...455) = 8...8910 = 8*(10^k-1)/9 + 22 = 2*f(k), and therefore A329623(f(k)) = A053392(f(k)) - f(k) = f(k). For a(10) = 182, we have A329623(182) = 728 and A329623(728) = 182, so this is the smallest member of the 2-cycle (182, 728). For a(11) = 273, we have A329623(273) = 637 and A329623(637) = 273, so this is the smallest member of the 2-cycle (273, 637). Similarly for all subsequent terms except the f(k) of the form 4...455.
Programs
-
PARI
is_A328279(n)={n==vecmin(vector(9,i,n=A329623(n)))}
-
PARI
apply( A328279(n)={if(n<10,n, bittest((n=divrem(n-10,4)+[1,2]~)[1],0), (n[2]*9-1)*10^(n[1]-1)\99*1000+n[2]*91, (-1+n[2]*=9)*10^n[1]\99*100+10+n[2])}, [1..40]) \\ Valid as long as there is no other term > 9 than those of the 7 infinite subfamilies mentioned in the comment.
Formula
Conjectures from Colin Barker, Dec 05 2019: (Start)
G.f.: x*(1 + x + x^2 + x^3 - 8*x^4 - 8*x^5 - 8*x^6 - 8*x^7 - 18*x^8 + 154*x^9 + 72*x^10 + 72*x^11 + 72*x^12 - 294*x^13 + 80*x^14 + 80*x^15 + 80*x^16 - 460*x^17) / ((1 - x)*(1 + x^4)*(1 - 10*x^4)).
a(n) = a(n-1) + 9*a(n-4) - 9*a(n-5) + 10*a(n-8) - 10*a(n-9) for n>17.
(End)
Comments