cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328288 Triangle T(m,n) = # { k | concat(mk,nk) has no digit twice or more }, m >= n >= 0.

This page as a plain text file.
%I A328288 #20 Dec 23 2024 14:53:46
%S A328288 0,986409,0,438404,304,0,572175,153,157,0,219202,197,124,97,0,109601,
%T A328288 221,156,69,171,0,255752,73,88,142,68,69,0,140515,129,73,81,86,62,46,
%U A328288 0,109601,189,88,40,67,48,51,24,0,432645,89,80,77,31,63,68,41,20,0,0,0,132,80,90,58,32,63,99,37,0
%N A328288 Triangle T(m,n) = # { k | concat(mk,nk) has no digit twice or more }, m >= n >= 0.
%C A328288 This is an extended version of A328277 which is restricted to m > n >= 1.
%C A328288 One may consider T(m,n) defined for all m, n >= 0, which would yield a symmetric, infinite square array T(m,n), see formula.
%C A328288 For m and/or n = 0, see A328287(n) = T(0,n) = T(n,0), n >= 0.
%C A328288 The table is finite in the sense that T(m,n) = 0 for m > 987654321 (even if the multiple isn't pandigital, (mk, nk) cannot have more than 9+1 distinct digits), but also whenever the total number of digits of m and n exceeds 10.
%H A328288 M. F. Hasler, in reply to E. Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2019-October">Fractions with no repeated digits</a>, SeqFan list, Oct. 10, 2020.
%F A328288 T(m,n) = 0 whenever m == n (mod 10).
%F A328288 T(m,n) = T(n,m) for all m, n >= 0, if the condition m > n is dropped.
%e A328288 The table reads :
%e A328288        0,    (m=0)
%e A328288   986409, 0,      (m=1)
%e A328288   438404, 304,   0,    (m=2)
%e A328288   572175, 153, 157,   0,    (m=3)
%e A328288   219202, 197, 124,  97,   0,   (m=4)
%e A328288   109601, 221, 156,  69, 171,  0,   (m=5)
%e A328288   255752,  73,  88, 142,  68, 69,  0,   (m=6)
%e A328288   140515, 129,  73,  81,  86, 62, 46,  0,   (m=7)
%e A328288   109601, 189,  88,  40,  67, 48, 51, 24,  0,   (m=8)
%e A328288   432645,  89,  80,  77,  31, 63, 68, 41, 20,  0,   (m=9)
%e A328288        0,   0, 132,  80,  90, 58, 32, 63, 99, 37,  0,   (m=10)
%e A328288    90212,   0, 106,  69,  79, 50, 30, 45, 30, 38,  0,  0,    (m=11)
%e A328288   127163,  76,   0,  96,  31, 62, 54, 27, 31, 49, 41, 27,   0,   (m=12)
%e A328288    75768,  84,  72,   0,  31, 58, 47, 26, 23, 34, 43, 25, 20,   0,  (m=13)
%e A328288    62436, 100,  64,  52,   0, 51, 44, 51, 42, 22, 38, 27, 18, 20   0,  (m=14)
%e A328288   ...
%e A328288 The terms corresponding to T(2,1) = 304 and T(3,1) = 153 are given in Eric Angelini's post to the SeqFan list.
%e A328288 Column 0 is A328287 (number of multiples of m that have only distinct and nonzero digits).
%o A328288 (PARI) T(m,n)=if(min(m,n), A328277(m,n), A328287(max(m,n)))
%K A328288 nonn,base,fini,tabl
%O A328288 0,2
%A A328288 _M. F. Hasler_, Oct 10 2019