This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328293 #27 Jul 02 2021 01:56:15 %S A328293 34,12025,12130,22789,102952,103039,205222,226019,300176,492203, %T A328293 492221,570760,1030144,1224376,1224466,2570470,2684090,3307264, %U A328293 3868067,3868157,4329380,4656049,4656427,5176537,6966262,6966403,6966421,7186697,7186787,7187318,7187516,7644406,11694973,12007691,12008315 %N A328293 Composite numbers k such that k+A055012(k) is the cube of a prime. %C A328293 Computing the range of A055012(n) up to some upper limit using A179239 might help reduce the search space for finding terms. - _David A. Corneth_, Oct 11 2019 %H A328293 Robert Israel, <a href="/A328293/b328293.txt">Table of n, a(n) for n = 1..2400</a> %e A328293 a(3) = 12130 is included because 12130 is composite and 12130 + 1^3 + 2^3 + 1^3 + 3^3 + 0^3 = 12167 = 23^3 and 23 is prime. %p A328293 filter:= proc(n) local x,t,F; %p A328293 if isprime(n) then return false fi; %p A328293 x:= n + add(t^3, t = convert(n,base,10)); %p A328293 F:= ifactors(x)[2]; %p A328293 nops(F)=1 and F[1][2]=3 %p A328293 end proc: %p A328293 F:= proc(p,lastp) local n0; %p A328293 n0:= max(p^3 - 9^3*(1+ilog10(p^3)),lastp^3+1); %p A328293 select(filter, [$n0 .. p^3]); %p A328293 end proc: %p A328293 seq(op(F(ithprime(i),ithprime(i-1))),i=2..50); %o A328293 (PARI) (scan(a,b)=forcomposite(n=max(a,b-9^3*(logint(b,10)+1))+1,b, n+A055012(n)==b && printf(n","))); forprime(p=1+o=2,234, scan(o^3,p^3)) \\ _M. F. Hasler_, Oct 11 2019 %Y A328293 Cf. A030078, A055012, A179239. %K A328293 nonn,base %O A328293 1,1 %A A328293 _Will Gosnell_ and _Robert Israel_, Oct 11 2019