cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328328 Unitary admirable numbers: numbers k such that there is a proper unitary divisor d of k such that usigma(k) - 2d = 2k, where usigma is the sum of unitary divisors function (A034448).

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 498, 534, 582, 606, 618, 630, 642, 654, 660, 678, 726, 750, 762, 780, 786, 822, 834, 840, 894, 906, 942, 978, 990, 1002, 1014, 1020, 1038, 1074, 1086
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2019

Keywords

Comments

Differs from A302574(n) at n >= 30.
Equivalently, numbers that equal to the sum of their proper unitary divisors, with one of them taken with a minus sign.
The unitary version of A111592.
The squarefree terms are also admirable numbers (A111592). The nonsquarefree terms are 150, 294, 420, 630, 660, 726, 750, 780, 840, 990, ...
The unitary abundant numbers (A034683) that are not unitary admirable numbers are: 210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 924, 930, 966, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper unitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

Subsequence of A034683 and A290466.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); aQ[n_] := (ab = usigma[n] - 2n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && CoprimeQ[2*n/ab, ab/2]; Select[Range[1086], aQ]