A328328 Unitary admirable numbers: numbers k such that there is a proper unitary divisor d of k such that usigma(k) - 2d = 2k, where usigma is the sum of unitary divisors function (A034448).
30, 42, 66, 70, 78, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 420, 426, 438, 474, 498, 534, 582, 606, 618, 630, 642, 654, 660, 678, 726, 750, 762, 780, 786, 822, 834, 840, 894, 906, 942, 978, 990, 1002, 1014, 1020, 1038, 1074, 1086
Offset: 1
Keywords
Examples
150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper unitary divisors with one of them, 6, taken with a minus sign.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); aQ[n_] := (ab = usigma[n] - 2n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && CoprimeQ[2*n/ab, ab/2]; Select[Range[1086], aQ]
Comments