This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328332 #11 Feb 16 2025 08:33:58 %S A328332 1,5,10,60,110,610,1110,6110,11110,61110,111110,611110,1111110, %T A328332 6111110,11111110,61111110,111111110,611111110,1111111110,6111111110, %U A328332 11111111110,61111111110,111111111110,611111111110,1111111111110,6111111111110,11111111111110,61111111111110,111111111111110 %N A328332 Expansion of (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)). %C A328332 Number of odd palindromes <= 10^n. %H A328332 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A328332 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,10,-10). %F A328332 G.f.: (1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)). %F A328332 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3). - _Wesley Ivan Hurt_, Aug 25 2022 %t A328332 nmax = 28; CoefficientList[Series[(1 + 4 x - 5 x^2 + 10 x^3) / ((1 - x) (1 - 10 x^2)), {x, 0, nmax}], x] %t A328332 Join[{1}, LinearRecurrence[{1, 10, -10}, {5, 10, 60}, 28]] %o A328332 (PARI) Vec((1 + 4*x - 5*x^2 + 10*x^3) / ((1 - x) * (1 - 10*x^2)) + O(x^30)) \\ _Michel Marcus_, Oct 13 2019 %Y A328332 Cf. A002113, A029950, A050250, A070199, A328333. %K A328332 nonn,base,easy %O A328332 0,2 %A A328332 _Ilya Gutkovskiy_, Oct 12 2019