This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328335 #7 Oct 16 2019 08:45:20 %S A328335 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,19,20,22,23,24,26,28,29,30, %T A328335 31,32,33,34,35,37,38,40,41,43,44,46,47,48,51,52,53,55,56,58,59,60,61, %U A328335 62,64,66,67,68,69,70,71,73,74,76,77,79,80,82,83,85,86,88 %N A328335 Numbers whose consecutive prime indices are relatively prime. %C A328335 First differs from A302569 in having 105, which has prime indices {2, 3, 4}. %C A328335 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A328335 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose consecutive parts are relatively prime (A328172). %e A328335 The sequence of terms together with their prime indices begins: %e A328335 1: {} %e A328335 2: {1} %e A328335 3: {2} %e A328335 4: {1,1} %e A328335 5: {3} %e A328335 6: {1,2} %e A328335 7: {4} %e A328335 8: {1,1,1} %e A328335 10: {1,3} %e A328335 11: {5} %e A328335 12: {1,1,2} %e A328335 13: {6} %e A328335 14: {1,4} %e A328335 15: {2,3} %e A328335 16: {1,1,1,1} %e A328335 17: {7} %e A328335 19: {8} %e A328335 20: {1,1,3} %e A328335 22: {1,5} %e A328335 23: {9} %t A328335 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328335 Select[Range[100],!MatchQ[primeMS[#],{___,x_,y_,___}/;GCD[x,y]>1]&] %Y A328335 A superset of A302569. %Y A328335 Numbers whose prime indices are relatively prime are A289509. %Y A328335 Numbers with no consecutive prime indices relatively prime are A328336. %Y A328335 Cf. A000837, A056239, A112798, A281116, A289508, A318981, A328168, A328169, A328172, A328187, A328188, A328220. %K A328335 nonn %O A328335 1,2 %A A328335 _Gus Wiseman_, Oct 14 2019