This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328336 #9 Nov 13 2019 07:13:34 %S A328336 1,2,3,5,7,9,11,13,17,19,21,23,25,27,29,31,37,39,41,43,47,49,53,57,59, %T A328336 61,63,65,67,71,73,79,81,83,87,89,91,97,101,103,107,109,111,113,115, %U A328336 117,121,125,127,129,131,133,137,139,147,149,151,157,159,163,167 %N A328336 Numbers with no consecutive prime indices relatively prime. %C A328336 First differs from A318978 in having 897, with prime indices {2, 6, 9}. %C A328336 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A328336 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions no consecutive parts relatively prime (A328187). %C A328336 Besides the initial 1 this differs from A305078: 47541=897*prime(16) is in A305078 but not in this set. - _Andrey Zabolotskiy_, Nov 13 2019 %e A328336 The sequence of terms together with their prime indices begins: %e A328336 1: {} %e A328336 2: {1} %e A328336 3: {2} %e A328336 5: {3} %e A328336 7: {4} %e A328336 9: {2,2} %e A328336 11: {5} %e A328336 13: {6} %e A328336 17: {7} %e A328336 19: {8} %e A328336 21: {2,4} %e A328336 23: {9} %e A328336 25: {3,3} %e A328336 27: {2,2,2} %e A328336 29: {10} %e A328336 31: {11} %e A328336 37: {12} %e A328336 39: {2,6} %e A328336 41: {13} %e A328336 43: {14} %t A328336 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328336 Select[Range[100],!MatchQ[primeMS[#],{___,x_,y_,___}/;GCD[x,y]==1]&] %Y A328336 Numbers with consecutive prime indices relatively prime are A328335. %Y A328336 Strict partitions with no consecutive parts relatively prime are A328220. %Y A328336 Numbers with relatively prime prime indices are A289509. %Y A328336 Cf. A000837, A056239, A078374, A112798, A281116, A289508, A318981, A328168, A328169, A328172, A328187, A328188. %K A328336 nonn %O A328336 1,2 %A A328336 _Gus Wiseman_, Oct 14 2019