cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328343 Numbers k such that it is possible to find k consecutive squares whose sum is equal to the sum of two consecutive squares.

Original entry on oeis.org

1, 2, 3, 10, 17, 25, 26, 34, 41, 50, 51, 65, 73, 82, 89, 97, 106, 113, 122, 123, 145, 146, 169, 170, 178, 185, 194, 218, 219, 241, 250, 257, 267, 274, 281, 291, 298, 305, 314, 338, 339, 353, 362, 370, 377, 386, 394, 401, 409, 410, 411, 433, 449, 457, 505, 530, 545
Offset: 1

Views

Author

Reiner Moewald, Oct 13 2019

Keywords

Comments

The program generates solutions to the problem, but not necessarily all solutions. To exclude the existence of further solution you have to apply coset arithmetics (modulo operations).

Examples

			k = 1: 3^2 + 4^2 = 5^2.
k = 2: 3^2 + 4^2 = 3^2 + 4^2.
k = 3: 13^2 + 14^2 = 10^2 + 11^2 + 12^2.
k = 10: 26^2 + 27^2 = 7^2 + ... + 16^2.
k = 17: 40^2 + 41^2 = 5^2 + ... + 21^2.
k = 25: 78^2 + 79^2 = 9^2 + ... + 33^2.
k = 26: 205^2 + 206^2 = 44^2 + ... + 49^2.
k = 34: 856^2 + 857^2 = 191^2 + ... + 224^2.
k = 41: 3029^2 + 3030^2 = 649^2 + ... + 689^2.
k = 50: 146^2 + 147^2 = 1^2 + ... + 50^2.
k = 51: 210^2 + 211^2 = 14^2 + ... + 64^2.
k = 65: 236^2 + 237^2 = 5^2 + ... + 69^2.
k = 73: 278^2 + 279^2 = 5^2 + ... + 76^2.
k = 82: 1070^2 + 1071^2 = 125^2 + ... + 206^2.
k = 89: 147445^2 + 147446^2 = 22059^2 + ... + 22147^2.
k = 97: 544^2 + 545^2 = 25^2 + ... + 121^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60], {} != FindInstance[ Sum[t^2, {t, x, x+#-1}] == y^2 + (y + 1)^2, {x, y}, Integers] &] (* Giovanni Resta, Oct 23 2019 *)
  • Python
    import math
    for n in range(1, 100):
       for b in range(1, 10000000):
          d = (6*b*b*(n+1)+6*b*n*(n+1)+2*n*n*n+3*n*n+n)
          w = int((math.sqrt(d/6)))
          a = w
          if 6*a*a-6*b*b*(n+1)-6*b*n*(n+1)-2*n*n*n-3*n*n-n == 0:
             print(a,b,n+1)
          a = w+1
          if 6*a*a-6*b*b*(n+1)-6*b*n*(n+1)-2*n*n*n-3*n*n-n == 0:
             print(a,b,n+1)
          a = w-1
          if 6*a*a-6*b*b*(n+1)-6*b*n*(n+1)-2*n*n*n-3*n*n-n == 0:
             print(a,b,n+1)

Extensions

a(17)-a(38) from Jon E. Schoenfield, Oct 22 2019
a(39)-a(57) from Jon E. Schoenfield and Giovanni Resta, Oct 23 2019