A328343 Numbers k such that it is possible to find k consecutive squares whose sum is equal to the sum of two consecutive squares.
1, 2, 3, 10, 17, 25, 26, 34, 41, 50, 51, 65, 73, 82, 89, 97, 106, 113, 122, 123, 145, 146, 169, 170, 178, 185, 194, 218, 219, 241, 250, 257, 267, 274, 281, 291, 298, 305, 314, 338, 339, 353, 362, 370, 377, 386, 394, 401, 409, 410, 411, 433, 449, 457, 505, 530, 545
Offset: 1
Keywords
Examples
k = 1: 3^2 + 4^2 = 5^2. k = 2: 3^2 + 4^2 = 3^2 + 4^2. k = 3: 13^2 + 14^2 = 10^2 + 11^2 + 12^2. k = 10: 26^2 + 27^2 = 7^2 + ... + 16^2. k = 17: 40^2 + 41^2 = 5^2 + ... + 21^2. k = 25: 78^2 + 79^2 = 9^2 + ... + 33^2. k = 26: 205^2 + 206^2 = 44^2 + ... + 49^2. k = 34: 856^2 + 857^2 = 191^2 + ... + 224^2. k = 41: 3029^2 + 3030^2 = 649^2 + ... + 689^2. k = 50: 146^2 + 147^2 = 1^2 + ... + 50^2. k = 51: 210^2 + 211^2 = 14^2 + ... + 64^2. k = 65: 236^2 + 237^2 = 5^2 + ... + 69^2. k = 73: 278^2 + 279^2 = 5^2 + ... + 76^2. k = 82: 1070^2 + 1071^2 = 125^2 + ... + 206^2. k = 89: 147445^2 + 147446^2 = 22059^2 + ... + 22147^2. k = 97: 544^2 + 545^2 = 25^2 + ... + 121^2.
Programs
-
Mathematica
Select[Range[60], {} != FindInstance[ Sum[t^2, {t, x, x+#-1}] == y^2 + (y + 1)^2, {x, y}, Integers] &] (* Giovanni Resta, Oct 23 2019 *)
-
Python
import math for n in range(1, 100): for b in range(1, 10000000): d = (6*b*b*(n+1)+6*b*n*(n+1)+2*n*n*n+3*n*n+n) w = int((math.sqrt(d/6))) a = w if 6*a*a-6*b*b*(n+1)-6*b*n*(n+1)-2*n*n*n-3*n*n-n == 0: print(a,b,n+1) a = w+1 if 6*a*a-6*b*b*(n+1)-6*b*n*(n+1)-2*n*n*n-3*n*n-n == 0: print(a,b,n+1) a = w-1 if 6*a*a-6*b*b*(n+1)-6*b*n*(n+1)-2*n*n*n-3*n*n-n == 0: print(a,b,n+1)
Extensions
a(17)-a(38) from Jon E. Schoenfield, Oct 22 2019
a(39)-a(57) from Jon E. Schoenfield and Giovanni Resta, Oct 23 2019
Comments