This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328347 #25 Apr 30 2020 07:13:49 %S A328347 1,1,1,3,4,3,7,15,15,7,19,52,72,52,19,51,175,300,300,175,51,141,576, %T A328347 1185,1480,1185,576,141,393,1869,4473,6685,6685,4473,1869,393,1107, %U A328347 6000,16380,28392,33880,28392,16380,6000,1107,3139,19107,58572,115332,159264,159264,115332,58572,19107,3139 %N A328347 Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (0,k,n-k) and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A328347 These walks are not restricted to the first (nonnegative) octant. %H A328347 Alois P. Heinz, <a href="/A328347/b328347.txt">Rows n = 0..200, flattened</a> %H A328347 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a> %H A328347 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a> %F A328347 T(n,k) = T(n,n-k). %e A328347 Triangle T(n,k) begins: %e A328347 1; %e A328347 1, 1; %e A328347 3, 4, 3; %e A328347 7, 15, 15, 7; %e A328347 19, 52, 72, 52, 19; %e A328347 51, 175, 300, 300, 175, 51; %e A328347 141, 576, 1185, 1480, 1185, 576, 141; %e A328347 393, 1869, 4473, 6685, 6685, 4473, 1869, 393; %e A328347 1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107; %e A328347 ... %p A328347 b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(add( %p A328347 add(`if`(i+j+k=1, (h-> `if`(add(t, t=h)<0, 0, b(h)))( %p A328347 sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1])) %p A328347 end: %p A328347 T:= (n, k)-> b(sort([0, k, n-k])): %p A328347 seq(seq(T(n, k), k=0..n), n=0..12); %t A328347 b[l_List] := b[l] = If[l[[-1]] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[Total[h] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]]; %t A328347 T[n_, k_] := b[Sort[{0, k, n - k}]]; %t A328347 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 30 2020, after _Alois P. Heinz_ *) %Y A328347 Columns k=0-1 give: A002426, A132894 = n*A005773(n). %Y A328347 Row sums give A084609. %Y A328347 T(2n,n) gives A328426. %Y A328347 Cf. A007318, A328300, A328345. %K A328347 nonn,tabl,walk %O A328347 0,4 %A A328347 _Alois P. Heinz_, Oct 13 2019