This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328352 #27 Jul 04 2023 14:09:25 %S A328352 0,1,56,2831,141706,7086081,354307956,17715417331,885770964206, %T A328352 44288548698581,2214427437370456,110721371880729831, %U A328352 5536068594097526706,276803429705181511081,13840171485260601432956,692008574263037701042331,34600428713151923199089206,1730021435657596350689323581 %N A328352 Similar to A328350, but for 5 digits rather then 3. %C A328352 This sequence is the building block for the calculation of the sums of positive integers whose decimal expansion only uses five distinct, nonzero digits: see the attached pdf document. %H A328352 Pierre-Alain Sallard, <a href="/A328352/b328352.txt">Table of n, a(n) for n = 0..50</a> %H A328352 Pierre-Alain Sallard, <a href="/A328352/a328352.pdf">Integers sequences A328348 and A328350 to A328356</a> %H A328352 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (56, -305, 250). %F A328352 a(n) = (40*50^n - 49*5^n + 9) / 1764. %F A328352 a(n) = 51*a(n-1) - 50*a(n-2) + 5^(n-1) for n > 1. %F A328352 G.f.: x / (1 - 56*x + 305*x^2 - 250*x^3). %F A328352 a(n) = 56*a(n-1) - 305*a(n-2) + 250*a(n-3) for n > 2. %e A328352 For n=2, the sum of all positive integers whose decimal notation is only made of the 3,4,5,6 and 7 digit with at most n=2 such digits, i.e. the sum 3+4+5+6+7+33+34+35+36+37+43+44+45+46+47+53+54+55+56+57+63+64+65+66+67+73+74+75+76+77 is equal to a(2)*(3+4+5+6+7) = 56*25 = 1400. %e A328352 The formula is valid for any other 5-tuple of digits, as soon as the 5 digits are different from each other. Always with n=2 but let's say with the 5,6,7,8 and 9 digits, the sum 5+6+7+8+9+55+56+57+58+59+65+66+67+68+69+75+76+77+78+79+85+86+87+88+89+95+96+97+98+99 is equal to a(2)*(5+6+7+8+9) = 56*35 = 1960. %o A328352 (Python) [(40*50**n-49*5**n+9)//1764 for n in range(12)] %Y A328352 Cf. A328348, A328350, A328351, A328353, A328354, A328355, A328356. %K A328352 nonn,base %O A328352 0,3 %A A328352 _Pierre-Alain Sallard_, Nov 26 2019