This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328365 #44 May 29 2025 06:16:16 %S A328365 1,2,1,2,3,4,2,3,5,1,2,3,6,3,4,7,8,2,3,4,4,5,9,1,2,3,4,10,5,6,11,3,4, %T A328365 5,12,6,7,13,2,3,4,5,14,1,2,3,4,5,4,5,6,7,8,15,16,8,9,17,3,4,5,6,5,6, %U A328365 7,18,9,10,19,2,3,4,5,6,20,1,2,3,4,5,6,6,7,8,10,11,21,4,5,6,7,22,11,12,23,7,8,9,24 %N A328365 Irregular triangle read by rows, T(n,k), n >= 1, k >= 1, in which row n lists in reverse order the partitions of n into consecutive parts. %C A328365 For m >= 0, row 2^m consists of just one element (2^m). - _Paolo Xausa_, May 24 2025 %H A328365 Paolo Xausa, <a href="/A328365/b328365.txt">Table of n, a(n) for n = 1..10350</a> (rows 1..500 of triangle, flattened) %e A328365 Triangle begins: %e A328365 [1]; %e A328365 [2]; %e A328365 [1, 2], [3]; %e A328365 [4]; %e A328365 [2, 3], [5]; %e A328365 [1, 2, 3], [6]; %e A328365 [3, 4], [7]; %e A328365 [8]; %e A328365 [2, 3, 4], [4, 5], [9]; %e A328365 [1, 2, 3, 4], [10]; %e A328365 [5, 6], [11]; %e A328365 [3, 4, 5], [12]; %e A328365 [6, 7], [13]; %e A328365 [2, 3, 4, 5], [14]; %e A328365 [1, 2, 3, 4, 5], [4, 5, 6], [7, 8], [15]; %e A328365 [16]; %e A328365 [8, 9], [17]; %e A328365 [3, 4, 5, 6], [5, 6, 7], [18]; %e A328365 [9, 10], [19]; %e A328365 [2, 3, 4, 5, 6], [20]; %e A328365 [1, 2, 3, 4, 5, 6], [6, 7, 8], [10, 11], [21]; %e A328365 [4, 5, 6, 7], [22]; %e A328365 [11, 12], [23]; %e A328365 [7, 8, 9], [24]; %e A328365 [3, 4, 5, 6, 7], [12, 13], [25]; %e A328365 [5, 6, 7, 8], [26]; %e A328365 [2, 3, 4, 5, 6, 7], [8, 9, 10], [13, 14], [27]; %e A328365 [1, 2, 3, 4, 5, 6, 7], [28]; %e A328365 ... %e A328365 For n = 9 there are three partitions of 9 into consecutive parts, they are [9], [5, 4], [4, 3, 2], so the 9th row of triangle is [2, 3, 4], [4, 5], [9]. %e A328365 Note that in the below diagram the number of horizontal line segments in the n-th row equals A001227(n), the number of partitions of n into consecutive parts, so we can find the partitions of n into consecutive parts as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [1, 2, 3, 4, 5], [4, 5, 6], [7, 8], [15], equaling the 15th row of the above triangle. %e A328365 Row _ %e A328365 1 |1|_ %e A328365 2 |_ 2|_ %e A328365 3 |1| 3|_ %e A328365 4 |2|_ 4|_ %e A328365 5 |_ 2| 5|_ %e A328365 6 |1|3|_ 6|_ %e A328365 7 |2| 3| 7|_ %e A328365 8 |3|_ 4|_ 8|_ %e A328365 9 |_ 2| 4| 9|_ %e A328365 10 |1|3| 5|_ 10|_ %e A328365 11 |2|4|_ 5| 11|_ %e A328365 12 |3| 3| 6|_ 12|_ %e A328365 13 |4|_ 4| 6| 13|_ %e A328365 14 |_ 2|5|_ 7|_ 14|_ %e A328365 15 |1|3| 4| 7| 15|_ %e A328365 16 |2|4| 5| 8|_ 16|_ %e A328365 17 |3|5|_ 6|_ 8| 17|_ %e A328365 18 |4| 3| 5| 9|_ 18|_ %e A328365 19 |5|_ 4| 6| 9| 19|_ %e A328365 20 |_ 2|5| 7|_ 10|_ 20|_ %e A328365 21 |1|3|6|_ 6| 10| 21|_ %e A328365 22 |2|4| 4| 7| 11|_ 22|_ %e A328365 23 |3|5| 5| 8|_ 11| 23|_ %e A328365 24 |4|6|_ 6| 7| 12|_ 24|_ %e A328365 25 |5| 3|7|_ 8| 12| 25|_ %e A328365 26 |6|_ 4| 5| 9|_ 13|_ 26|_ %e A328365 27 |_ 2|5| 6| 8| 13| 27|_ %e A328365 28 |1|3|6| 7| 9| 14| 28| %e A328365 ... %e A328365 The diagram is infinite. For more information about the diagram see A286001. %e A328365 For an amazing connection with sum of divisors function (A000203) see A237593. %t A328365 Table[With[{h = Floor[n/2] - Boole[EvenQ@ n]},Append[Array[Which[Total@ # == n, #, Total@ Most@ # == n, Most[#], True, Nothing] &@ NestWhile[Append[#, #[[-1]] + 1] &, {#}, Total@ # <= n &, 1, h - # + 1] &, h], {n}]], {n, 24}] // Flatten (* _Michael De Vlieger_, Oct 22 2019 *) %Y A328365 Mirror of A299765. %Y A328365 Row n has length A204217(n). %Y A328365 Row sums give A245579. %Y A328365 Column 1 gives A118235. %Y A328365 Right border gives A000027. %Y A328365 Records give A000027. %Y A328365 Where records occur gives A285899. %Y A328365 The number of partitions into consecutive parts in row n is A001227(n). %Y A328365 For tables of partitions into consecutive parts see A286000 and A286001. %Y A328365 Cf. A000203, A026792, A235791, A237048, A237591, A237593, A245092, A285914, A286013, A288529, A288772, A288773, A288774, A328361, A328362. %K A328365 nonn,tabf %O A328365 1,2 %A A328365 _Omar E. Pol_, Oct 22 2019