cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328366 a(n) is the surface area of the stepped pyramid with n levels described in A245092.

Original entry on oeis.org

6, 20, 40, 70, 102, 150, 194, 256, 318, 394, 462, 566, 646, 750, 858, 984, 1088, 1238, 1354, 1518, 1666, 1826, 1966, 2182, 2344, 2532, 2720, 2944, 3120, 3384, 3572, 3826, 4054, 4298, 4534, 4860, 5084, 5356, 5624, 5964, 6212, 6572, 6832, 7176, 7512, 7840, 8124, 8564, 8874, 9260, 9608, 10012
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2019

Keywords

Examples

			For n = 1 the first level of the stepped pyramid is a cube, so a(1) = 6.
		

Crossrefs

Programs

  • Mathematica
    s=0;Do[s=s+4*DivisorSigma[1,n];t=2n(n+1);Print[(s/2)+t],{n,1,8000}] (* Metin Sariyar, Nov 20 2019 *)
  • Python
    from math import isqrt
    def A328366(n): return (n*(n+1)<<1)-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = 4*A000217(n) + 2*A024916(n).
a(n) = 2*(A002378(n) + A327329(n)).
a(n) = 2*(A045943(n) + A153485(n)).
a(n) = A046092(n) + A327329(n).
a(n) = 2*A299692(n).
a(n) = c * n^2 + O(n*log(n)), where c = zeta(2) + 2 = 3.644934... . - Amiram Eldar, Mar 21 2024