This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328379 #92 Dec 02 2019 03:46:31 %S A328379 0,1,3,4,7,11,12,11,15,24,31,29,28,37,33,26,31,49,66,61,71,92,85,67, %T A328379 60,87,103,90,77,95,78,57,63,98,133,121,150,191,177,138,151,215,254, %U A328379 219,197,240,199,145,124,185,237,210,235,293,262,199,165,230,263,223 %N A328379 a(n) is the sum of the distinct numbers whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n. %H A328379 Rémy Sigrist, <a href="/A328379/b328379.txt">Table of n, a(n) for n = 0..16384</a> %H A328379 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A328379 A078823(n) <= a(n). %F A328379 a(2^k) = 2^(k+1)-1 for any k >= 0. %F A328379 a(2^k-1) = A000295(k+1) for any k >= 0. %e A328379 The first terms, alongside the binary representations of n as well as those of the numbers that appear in it, are: %e A328379 n a(n) bin(n) {bin(s)} %e A328379 -- ---- ------ ---------------------------- %e A328379 0 0 0 {0} %e A328379 1 1 1 {1} %e A328379 2 3 10 {0, 1, 10} %e A328379 3 4 11 {1, 11} %e A328379 4 7 100 {0, 1, 10, 100} %e A328379 5 11 101 {0, 1, 10, 11, 101} %e A328379 6 12 110 {0, 1, 10, 11, 110} %e A328379 7 11 111 {1, 11, 111} %e A328379 8 15 1000 {0, 1, 10, 100, 1000} %e A328379 9 24 1001 {0, 1, 10, 11, 100, 101, 1001} %e A328379 10 31 1010 {0, 1, 10, 11, 100, 101, 110, 1010} %o A328379 (PARI) a(n, base=2) = { my (b=digits(n, base), s=[0]); for (k=1, #b, s = setunion(s, apply(o -> base*o+b[k], s))); vecsum(s) } %Y A328379 Cf. A000295, A078823, A329873. %K A328379 nonn,base %O A328379 0,3 %A A328379 _Rémy Sigrist_, Nov 30 2019