cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328406 The length of primorial base expansion (number of significant digits) of A276086(A276086(A276086(n))), where A276086(n) converts primorial base expansion of n into its prime product form.

This page as a plain text file.
%I A328406 #12 Oct 18 2019 11:29:21
%S A328406 2,3,2,3,3,7,4,5,6,3,7,8,12,8,7,12,12,7,17,11,25,21,24,84,49,63,94,67,
%T A328406 49,97,4,6,8,9,7,10,6,14,13,4,14,11,22,22,19,20,66,16,23,40,20,19,50,
%U A328406 105,81,87,104,71,49,81,12,10,34,21,9,16,11,23,16,17,85,49,71,27,44,21,93,87,39,58,171,50,205,112,54,78,78
%N A328406 The length of primorial base expansion (number of significant digits) of A276086(A276086(A276086(n))), where A276086(n) converts primorial base expansion of n into its prime product form.
%H A328406 Antti Karttunen, <a href="/A328406/b328406.txt">Table of n, a(n) for n = 0..32768</a>
%H A328406 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A328406 a(n) = A235224(A328403(n)) = A328404(A276087(n)) = A328405(A276086(n)).
%F A328406 For all n, A000040(a(n)) > A328398(n).
%t A328406 Block[{b = MixedRadix[Reverse@ Prime@ Range@ 120], f}, f[n_] := Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[IntegerLength[Nest[f, #, 3], b] &, 87, 0]] (* _Michael De Vlieger_, Oct 17 2019 *)
%o A328406 (PARI)
%o A328406 A235224(n) = { my(s=0, p=2); while(n, s++; n = n\p; p = nextprime(1+p)); (s); };
%o A328406 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A328406 A328403(n) = A276086(A276086(A276086(n)));
%o A328406 A328406(n) = A235224(A328403(n));
%Y A328406 Cf. A235224, A276086, A276087, A328398, A328403, A328404, A328405.
%K A328406 nonn
%O A328406 0,1
%A A328406 _Antti Karttunen_, Oct 16 2019