A328410 Smallest m such that (Z/mZ)* = C_2 X C_(2n), or 0 if no such m exists, where (Z/mZ)* is the multiplicative group of integers modulo m.
8, 15, 21, 32, 33, 35, 0, 51, 57, 55, 69, 0, 0, 87, 77, 128, 0, 95, 0, 123, 129, 115, 141, 119, 0, 159, 324, 0, 177, 143, 0, 256, 161, 0, 213, 219, 0, 0, 237, 187, 249, 203, 0, 267, 209, 235, 0, 291, 0, 303, 309, 0, 321, 327, 253, 339, 0, 295, 0, 287, 0, 0, 381, 512, 393, 299, 0
Offset: 1
Keywords
Examples
The solutions to (Z/mZ)* = C_2 X C_6 are m = 21, 28, 36 and 42, the smallest of which is 21, so a(3) = 21.
Links
- Wikipedia, Multiplicative group of integers modulo n
Programs
-
PARI
a(n) = my(r=4*n, N=floor(exp(Euler)*r*log(log(r^2))+2.5*r/log(log(r^2)))); for(k=r+1, N+1, if(eulerphi(k)==r && lcm(znstar(k)[2])==r/2, return(k)); if(k==N+1, return(0)))
Comments