A328411 Largest m such that (Z/mZ)* = C_2 X C_(2n), or 0 if no such m exists, where (Z/mZ)* is the multiplicative group of integers modulo m.
12, 30, 42, 32, 66, 90, 0, 102, 114, 150, 138, 0, 0, 174, 198, 128, 0, 270, 0, 246, 294, 230, 282, 306, 0, 318, 324, 0, 354, 450, 0, 256, 414, 0, 426, 438, 0, 0, 474, 374, 498, 522, 0, 534, 594, 470, 0, 582, 0, 750, 618, 0, 642, 810, 726, 678, 0, 590, 0, 738, 0, 0, 762, 512
Offset: 1
Keywords
Examples
The solutions to (Z/mZ)* = C_2 X C_12 are m = 35, 39, 45, 52, 70, 78 and 90, the largest of which is 90, so a(6) = 90.
Links
- Wikipedia, Multiplicative group of integers modulo n
Programs
-
PARI
a(n) = my(r=4*n, N=floor(exp(Euler)*r*log(log(r^2))+2.5*r/log(log(r^2)))); forstep(k=N, r, -1, if(eulerphi(k)==r && lcm(znstar(k)[2])==r/2, return(k)); if(k==r, return(0)))
Comments