A328414 Numbers k such that (Z/mZ)* = C_2 X C_(2k) has no solutions m, where (Z/mZ)* is the multiplicative group of integers modulo m.
7, 12, 13, 17, 19, 25, 28, 31, 34, 37, 38, 43, 47, 49, 52, 57, 59, 61, 62, 67, 71, 73, 76, 77, 79, 80, 84, 85, 91, 92, 93, 94, 97, 100, 101, 103, 104, 107, 108, 109, 112, 117, 118, 121, 122, 124, 127, 129, 133, 137, 139, 142, 143, 144, 148, 149, 151, 152, 157, 160, 161, 163, 164
Offset: 1
Keywords
Examples
12 is a term: if there exists m such that (Z/mZ)* = C_2 X C_24 = C_2 X C_8 X C_3, then m must have a factor q such that q is an odd prime power and phi(q) = 8 or phi(q) = 24, phi = A000010, which is impossible. 80 is a term: if there exists m such that (Z/mZ)* = C_2 X C_80 = C_2 X C_16 X C_5, then m must have a factor q such that q is an odd prime power and phi(q) = 80 or phi(q) = 16, which is impossible.
Links
- Wikipedia, Multiplicative group of integers modulo n
Comments