A328415 Numbers k such that (Z/mZ)* = C_2 X C_(2k) has exactly one solution, where (Z/mZ)* is the multiplicative group of integers modulo m.
4, 16, 27, 32, 64, 256, 512, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 2097152, 4194304, 4782969, 8388608, 14348907, 16777216, 33554432, 67108864, 134217728, 268435456, 387420489, 536870912, 1073741824
Offset: 1
Keywords
Examples
The only solution to (Z/mZ)* = C_2 X C_54 is m = 324, so 54/2 = 27 is a term.
Links
- Wikipedia, Multiplicative group of integers modulo n
Crossrefs
Cf. A328412.
Programs
-
PARI
select(i->!isprime(2*i+1), upto(10^9)) \\ See A006899 for the function upto(n)
Comments