A328419 Number of unlabeled minimally rigid graphs in 3D on n vertices.
1, 1, 1, 4, 26, 374, 11487, 612884, 48176183, 5115840190, 698180921122
Offset: 3
Links
- Georg Grasegger, Mathematica program: Minimally rigid graphs in 3D with n<=11 vertices
- Georg Grasegger, C. Koutschan and E. Tsigaridas, Lower bounds on the number of realizations of rigid graphs, arXiv:1710.08237 [math.CO], 2017-2018; Experimental Mathematics, 2018 (doi: 10.1080/10586458.2018.1437851).
- H. Pollaczek-Geiringer, Zur Gliederungstheorie räumlicher Fachwerke, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 12(1932), 369-376 (doi:10.1002/zamm.19320120606).
- Tiong-Seng Tay and Walter Whiteley, Generating Isostatic Frameworks, Structural Topology, 11 (1985), 21-69.
Crossrefs
Programs
-
Mathematica
Table[Length[H12GeiringerGraphs[n]], {n, 4, 11}] (* see Link *)
Extensions
a(12) from Georg Grasegger, independently computed by Martin Larsson, Jan 10 2022
a(13) from Georg Grasegger, Oct 17 2024
Comments