This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328433 #15 Mar 02 2020 09:40:11 %S A328433 1,1,2,4,11,37,157,791,4676,31490,238814,2009074,18585645,187366675, %T A328433 2045016693,24018394333,302051731428,4049206907012,57642586053512, %U A328433 868375941780450,13801973373609889,230808858283551859,4051069379668626948,74459335679007458268 %N A328433 Number of inversion sequences of length n avoiding the consecutive patterns 011 and 012. %C A328433 A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i < e_{i+1} <= e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 011 and 012. %H A328433 Alois P. Heinz, <a href="/A328433/b328433.txt">Table of n, a(n) for n = 0..464</a> %H A328433 Juan S. Auli and Sergi Elizalde, <a href="https://arxiv.org/abs/1906.07365">Consecutive patterns in inversion sequences II: avoiding patterns of relations</a>, arXiv:1906.07365 [math.CO], 2019. %F A328433 a(n) ~ n! * c * (3^(3/2)/(2*Pi))^n / n^alfa, where alfa = A073016 = Sum_{k>=1} 1/binomial(2*k, k) = 1/3 + 2*Pi/3^(5/2) = 0.73639985871871507790... and c = 2.21611825460684222558745179... - _Vaclav Kotesovec_, Oct 19 2019 %e A328433 The a(4)=11 length 4 inversion sequences avoiding the consecutive patterns 011 and 012 are 0000, 0100, 0010, 0020, 0001, 0101, 0021, 0002, 0102, 0003, and 0103. %p A328433 # after _Alois P. Heinz_ in A328357 %p A328433 b := proc(n, x, t) option remember; `if`(n = 0, 1, add( %p A328433 `if`(t and i < x, 0, b(n - 1, i, i <= x)), i = 0 .. n - 1)) %p A328433 end proc: %p A328433 a := n -> b(n, -1, false): %p A328433 seq(a(n), n = 0 .. 24); %t A328433 b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i <= x]], {i, 0, n - 1}]]; %t A328433 a[n_] := b[n, -1, False]; %t A328433 a /@ Range[0, 24] (* _Jean-François Alcover_, Mar 02 2020, after _Alois P. Heinz_ in A328357 *) %Y A328433 Cf. A328357, A328358, A328429, A328430, A328431, A328432, A328434, A328435, A328436, A328437, A328438, A328439, A328440, A328441, A328442. %K A328433 nonn %O A328433 0,3 %A A328433 _Juan S. Auli_, Oct 16 2019