This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328458 #16 Feb 23 2023 15:30:31 %S A328458 1,0,0,1,0,2,0,1,1,1,0,3,0,1,1,1,0,2,0,2,1,1,0,3,1,1,1,1,0,2,0,1,1,1, %T A328458 1,3,0,1,1,2,0,2,0,1,1,1,0,3,1,1,1,1,0,2,1,2,1,1,0,5,0,1,1,1,1,2,0,1, %U A328458 1,1,0,3,0,1,1,1,1,2,0,2,1,1,0,3,1,1,1,1,0,2,1,1,1,1,1,3,0,1,1,2,0,2,0,1,1 %N A328458 Maximum run-length of the nontrivial divisors (greater than 1 and less than n) of n. %C A328458 By convention, a(1) = 1, and a(p) = 0 for p prime. %H A328458 Antti Karttunen, <a href="/A328458/b328458.txt">Table of n, a(n) for n = 1..100000</a> %e A328458 The non-singleton runs of the nontrivial divisors of 1260 are: {2,3,4,5,6,7} {9,10} {14,15} {20,21} {35,36}, so a(1260) = 6. %t A328458 Table[Switch[n,1,1,_?PrimeQ,0,_,Max@@Length/@Split[DeleteCases[Divisors[n],1|n],#2==#1+1&]],{n,100}] %o A328458 (PARI) A328458(n) = if(1==n,n,my(rl=0,pd=0,m=0); fordiv(n, d, if(1<d && d<n, if(d>(1+pd), m = max(m,rl); rl=0); pd=d; rl++)); max(m,rl)); \\ _Antti Karttunen_, Feb 23 2023 %Y A328458 Positions of first appearances are A328459. %Y A328458 Positions of 0's and 1's are A088723. %Y A328458 The version that looks at all divisors is A055874. %Y A328458 The number of successive pairs of divisors > 1 of n is A088722(n). %Y A328458 The Heinz number of the multiset of run-lengths of divisors of n is A328166(n). %Y A328458 Cf. A033676, A060681, A060775, A070824, A088725, A129308, A181063, A199970, A328165, A163870, A328194, A328448, A328449. %K A328458 nonn %O A328458 1,6 %A A328458 _Gus Wiseman_, Oct 17 2019 %E A328458 Data section extended up to a(105) by _Antti Karttunen_, Feb 23 2023