This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328464 #19 Oct 18 2019 21:29:09 %S A328464 1,3,1,7,4,1,9,16,6,1,31,19,36,8,1,33,106,41,78,12,1,37,109,386,85, %T A328464 144,14,1,39,121,391,1002,155,222,18,1,211,124,421,1009,2432,235,324, %U A328464 20,1,213,1156,426,1079,2443,4200,341,438,24,1,217,1159,5006,1086,2575,4213,7430,457,668,30,1,219,1171,5011,17018,2586,4421,7447,12674,691,900,32,1 %N A328464 Square array A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1), read by descending antidiagonals. %C A328464 Array is read by falling antidiagonals with n (row) and k (column) ranging as: (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ... %C A328464 Row n contains all such sums of distinct primorials whose least significant summand is A002110(n-1), with each sum divided by that least significant primorial, which is also the largest primorial which divides that sum. %H A328464 Antti Karttunen, <a href="/A328464/b328464.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a> %H A328464 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A328464 A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1). %F A328464 a(n) = A328461(A135764(n)). [When all sequences are considered as one-dimensional] %e A328464 Top left 9 X 11 corner of the array: %e A328464 1: | 1, 3, 7, 9, 31, 33, 37, 39, 211, 213, 217 %e A328464 2: | 1, 4, 16, 19, 106, 109, 121, 124, 1156, 1159, 1171 %e A328464 3: | 1, 6, 36, 41, 386, 391, 421, 426, 5006, 5011, 5041 %e A328464 4: | 1, 8, 78, 85, 1002, 1009, 1079, 1086, 17018, 17025, 17095 %e A328464 5: | 1, 12, 144, 155, 2432, 2443, 2575, 2586, 46190, 46201, 46333 %e A328464 6: | 1, 14, 222, 235, 4200, 4213, 4421, 4434, 96578, 96591, 96799 %e A328464 7: | 1, 18, 324, 341, 7430, 7447, 7753, 7770, 215442, 215459, 215765 %e A328464 8: | 1, 20, 438, 457, 12674, 12693, 13111, 13130, 392864, 392883, 393301 %e A328464 9: | 1, 24, 668, 691, 20678, 20701, 21345, 21368, 765050, 765073, 765717 %o A328464 (PARI) %o A328464 up_to = 105; %o A328464 A002110(n) = prod(i=1,n,prime(i)); %o A328464 A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); }; %o A328464 A328464sq(n,k) = (A276156((2^(n-1)) * (k+k-1)) / A002110(n-1)); %o A328464 A328464list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A328464sq(col,(a-(col-1))))); (v); }; %o A328464 v328464 = A328464list(up_to); %o A328464 A328464(n) = v328464[n]; %Y A328464 Cf. A328463 (transpose). %Y A328464 Cf. A000265, A002110, A007814, A135764, A276154, A276156, %Y A328464 Rows 1 - 5: A328462, A328465, A328466, A328467, A328468. %Y A328464 Column 2: A008864. %Y A328464 Column 3: A023523 (after its initial term). %Y A328464 Column 4: A286624. %Y A328464 Cf. also arrays A276945, A286625. %K A328464 nonn,tabl %O A328464 1,2 %A A328464 _Antti Karttunen_, Oct 16 2019