cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328477 Lexicographically earliest infinite sequence such that a(i) = a(j) => A328469(A276086(i)) = A328469(A276086(j)) for all i, j.

This page as a plain text file.
%I A328477 #15 Oct 19 2019 21:27:56
%S A328477 1,2,3,4,5,6,7,4,8,9,10,11,12,6,10,11,13,14,15,16,17,18,19,20,21,22,
%T A328477 23,24,25,26,27,4,8,9,10,11,28,9,29,30,31,32,33,11,31,32,34,35,36,18,
%U A328477 37,38,39,40,41,24,42,43,44,45,46,6,10,11,13,14,33,11,31,32,34,35,47,14,34,35,48,49,50,20,39,40,51,52,53,26,44,45,54,55,56,16,17,18,19,20,36,18
%N A328477 Lexicographically earliest infinite sequence such that a(i) = a(j) => A328469(A276086(i)) = A328469(A276086(j)) for all i, j.
%C A328477 Restricted growth sequence transform of function f(n) = A328469(A276086(n)), or equally, of the function g(0) = 0; n > 0, g(n) = [A053669(n), A278226(n)], where in the ordered pair A053669(n) gives the smallest prime not dividing n, while A278226(n) gives the prime signature of A276086(n), i.e., a signature of the multiset of nonzero digits in the primorial base expansion of n. Note that A000720(A053669(n)) = A055396(A276086(n)) is one more than the number of trailing zeros in the primorial base expansion for n > 0.
%H A328477 Antti Karttunen, <a href="/A328477/b328477.txt">Table of n, a(n) for n = 0..32768</a>
%H A328477 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%e A328477 When written in primorial base (A049345), numbers 42 ("1200" as 42 = 1*A002110(3) + 2*A002110(2) + 0*A002110(1) + 0*A002110(0) = 1*30 + 2*6 + 0*2 + 0*1), 66 ("2100" as 66 = 2*30 + 1*6 + 0*2 + 0*1) and 222 ("10200" as 222 = 1*210 + 0*30 + 2*6 + 0*2 + 0*1) all have {1, 2} as their multiset of nonzero digits, and all have exactly two trailing zeros, thus they get an equal value in this sequence, namely a(42) = a(66) = a(222) = 33, where 33 is a running number allotted by the restricted growth sequence transform.
%o A328477 (PARI)
%o A328477 up_to = 32768;
%o A328477 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A328477 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1);
%o A328477 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o A328477 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A328477 Aux328469(n) = [A020639(n), A046523(n)];
%o A328477 Aux328477(n) = Aux328469(A276086(n));
%o A328477 v328477 = rgs_transform(vector(1+up_to, n, Aux328477(n-1)));
%o A328477 A328477(n) = v328477[1+n];
%Y A328477 Cf. A020639, A046523, A049345, A053669, A276086, A278226, A286626, A328399, A328469.
%K A328477 nonn
%O A328477 0,2
%A A328477 _Antti Karttunen_, Oct 19 2019