cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328487 Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 * (1 - 2^(1 - s))^2.

This page as a plain text file.
%I A328487 #15 Sep 15 2023 05:45:03
%S A328487 1,2,8,3,12,16,16,4,42,24,24,24,28,32,96,5,36,84,40,36,128,48,48,32,
%T A328487 98,56,184,48,60,192,64,6,192,72,192,126,76,80,224,48,84,256,88,72,
%U A328487 504,96,96,40,178,196,288,84,108,368,288,64,320,120,120,288,124,128,672,7,336
%N A328487 Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 * (1 - 2^(1 - s))^2.
%C A328487 Dirichlet convolution of A000593 with itself.
%H A328487 Amiram Eldar, <a href="/A328487/b328487.txt">Table of n, a(n) for n = 1..10000</a>
%F A328487 a(n) = Sum_{d|n} A000593(d) * A000593(n/d).
%F A328487 Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (Pi^2 * (log(n)/2 + log(2) + gamma - 1/4) + 6*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 17 2019
%F A328487 Multiplicative with a(2^e) = e+1, and a(p^e) = ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3 for an odd prime p. - _Amiram Eldar_, Sep 15 2023
%t A328487 nmax = 65; A000593 = Table[DivisorSum[n, Mod[#, 2] # &], {n, 1, nmax}]; Table[DivisorSum[n, A000593[[#]] A000593[[n/#]] &], {n, 1, nmax}]
%t A328487 f[p_, e_] := ((e+1)*p^(e+3) - (e+3)*(p^(e+2) - p + 1) + 2)/(p-1)^3; f[2, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 15 2023 *)
%Y A328487 Cf. A000593, A001620, A034761, A328486.
%K A328487 nonn,easy,mult
%O A328487 1,2
%A A328487 _Ilya Gutkovskiy_, Oct 16 2019