A328489 Odd numbers k such that the four consecutive odd numbers starting with k have a total of 5 prime factors counting multiplicity.
3, 5, 7, 11, 13, 17, 37, 67, 107, 307, 877, 1297, 2267, 2657, 3457, 3847, 3917, 4787, 4967, 5737, 11827, 12037, 14627, 16447, 18127, 18517, 19417, 20477, 20747, 20897, 21377, 21557, 22567, 22637, 23057, 23557, 23627, 25577, 29567, 31387, 32057, 33347, 33767, 34757, 35797, 36467, 36787, 37307
Offset: 1
Keywords
Examples
a(3)=7 is in the sequence because 7*9*11*13 is the product of exactly 5 primes: 3*3*7*11*13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A1:= select(t -> isprime((t+2)/3) and isprime(t) and isprime(t+4) and isprime(t+6), {seq(i,i=7..100000,30)}): A2:= select(t -> isprime((t+4)/3) and isprime(t) and isprime(t+2) and isprime(t+6), {seq(i,i=17..100000,30)}); sort(convert({3,5,11,13} union A1 union A2,list));
Comments