cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328495 Decimal expansion of Sum_{k>=0} (-1)^k*L(k)/k!, where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

2, 0, 5, 3, 5, 6, 5, 1, 1, 1, 4, 7, 6, 5, 1, 0, 9, 6, 0, 3, 4, 4, 9, 1, 4, 6, 6, 1, 1, 4, 6, 9, 6, 5, 3, 0, 9, 3, 2, 0, 2, 5, 8, 6, 4, 4, 9, 4, 5, 9, 1, 8, 2, 4, 8, 7, 0, 2, 3, 6, 2, 9, 7, 2, 0, 4, 0, 8, 9, 6, 4, 4, 0, 4, 5, 4, 2, 3, 5, 9, 3, 8, 3, 4, 7, 7, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2019

Keywords

Examples

			2.053565111476510960344914661146965309320258644945918...
		

References

  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, 2nd edition, Wiley, 2017, chapter 13.8, pp. 248-250.

Crossrefs

Programs

  • Maple
    Digits := 100: 2*exp(-1/2)*cosh(sqrt(5)/2)*10^86:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 22 2019
  • Mathematica
    RealDigits[Exp[-GoldenRatio] + Exp[GoldenRatio - 1], 10, 100][[1]]

Formula

Equals exp(-phi) + exp(phi-1), where phi is the golden ratio (A001622).
Equals 2*exp(-1/2)*cosh(sqrt(5)/2) = A249455*cosh(phi - 1/2). - Peter Luschny, Oct 22 2019
Equals A328344 / e. - Amiram Eldar, Feb 06 2022