A328495 Decimal expansion of Sum_{k>=0} (-1)^k*L(k)/k!, where L(k) is the k-th Lucas number (A000032).
2, 0, 5, 3, 5, 6, 5, 1, 1, 1, 4, 7, 6, 5, 1, 0, 9, 6, 0, 3, 4, 4, 9, 1, 4, 6, 6, 1, 1, 4, 6, 9, 6, 5, 3, 0, 9, 3, 2, 0, 2, 5, 8, 6, 4, 4, 9, 4, 5, 9, 1, 8, 2, 4, 8, 7, 0, 2, 3, 6, 2, 9, 7, 2, 0, 4, 0, 8, 9, 6, 4, 4, 0, 4, 5, 4, 2, 3, 5, 9, 3, 8, 3, 4, 7, 7, 1
Offset: 1
Examples
2.053565111476510960344914661146965309320258644945918...
References
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Volume 1, 2nd edition, Wiley, 2017, chapter 13.8, pp. 248-250.
Programs
-
Maple
Digits := 100: 2*exp(-1/2)*cosh(sqrt(5)/2)*10^86: ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Oct 22 2019
-
Mathematica
RealDigits[Exp[-GoldenRatio] + Exp[GoldenRatio - 1], 10, 100][[1]]
Formula
Equals exp(-phi) + exp(phi-1), where phi is the golden ratio (A001622).
Equals 2*exp(-1/2)*cosh(sqrt(5)/2) = A249455*cosh(phi - 1/2). - Peter Luschny, Oct 22 2019
Equals A328344 / e. - Amiram Eldar, Feb 06 2022