This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328509 #23 Feb 16 2025 08:33:58 %S A328509 0,0,0,3,41,425,4287,45941,541219,7071501,102193755,1622448861, %T A328509 28090940363,526856206877,10641335658891,230283166014653, %U A328509 5315654596751659,130370766738143517,3385534662263335179,92801587315936355325,2677687796232803000171,81124824998464533181661 %N A328509 Number of non-unimodal sequences of length n covering an initial interval of positive integers. %C A328509 A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. %H A328509 Andrew Howroyd, <a href="/A328509/b328509.txt">Table of n, a(n) for n = 0..200</a> %H A328509 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodalSequence.html">Unimodal Sequence</a>. %F A328509 a(n) = A000670(n) - A007052(n-1) for n > 0. - _Andrew Howroyd_, Jan 28 2024 %e A328509 The a(3) = 3 sequences are (2,1,2), (2,1,3), (3,1,2). %e A328509 The a(4) = 41 sequences: %e A328509 (1212) (2113) (2134) (2413) (3142) (3412) %e A328509 (1213) (2121) (2143) (3112) (3212) (4123) %e A328509 (1312) (2122) (2212) (3121) (3213) (4132) %e A328509 (1323) (2123) (2213) (3122) (3214) (4213) %e A328509 (1324) (2131) (2312) (3123) (3231) (4231) %e A328509 (1423) (2132) (2313) (3124) (3241) (4312) %e A328509 (2112) (2133) (2314) (3132) (3312) %t A328509 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A328509 unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; %t A328509 Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&]],{n,0,5}] %o A328509 (PARI) seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 3*x + x^2)/(1 - 4*x + 2*x^2), -(n+1)) \\ _Andrew Howroyd_, Jan 28 2024 %Y A328509 Not requiring non-unimodality gives A000670. %Y A328509 The complement is counted by A007052. %Y A328509 The case where the negation is not unimodal either is A332873. %Y A328509 Unimodal compositions are A001523. %Y A328509 Non-unimodal permutations are A059204. %Y A328509 Non-unimodal compositions are A115981. %Y A328509 Unimodal compositions covering an initial interval are A227038. %Y A328509 Numbers whose unsorted prime signature is not unimodal are A332282. %Y A328509 Covering partitions with unimodal run-lengths are A332577. %Y A328509 Non-unimodal compositions covering an initial interval are A332743. %Y A328509 Cf. A060223, A255906, A332281, A332284, A332639, A332672, A332834, A332870. %K A328509 nonn %O A328509 0,4 %A A328509 _Gus Wiseman_, Feb 19 2020 %E A328509 a(9) from _Robert Price_, Jun 19 2021 %E A328509 a(10) onwards from _Andrew Howroyd_, Jan 28 2024