This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328513 #4 Oct 22 2019 10:20:08 %S A328513 1,2,3,5,7,11,13,17,19,21,23,29,31,37,39,41,43,47,53,57,59,61,65,67, %T A328513 71,73,79,83,87,89,91,97,101,103,107,109,111,113,115,127,129,131,133, %U A328513 137,139,149,151,157,159,163,167,173,179,181,183,185,191,193,195 %N A328513 Connected squarefree numbers. %C A328513 First differs from A318718 and A318719 in having 195 = prime(2) * prime(3) * prime(6). %C A328513 A squarefree number with prime factorization prime(m_1) * ... * prime(m_k) is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078. %H A328513 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %F A328513 Intersection of A005117 and A305078. %e A328513 The sequence of all connected sets of multisets together with their MM-numbers (A302242) begins: %e A328513 1: {} %e A328513 2: {{}} %e A328513 3: {{1}} %e A328513 5: {{2}} %e A328513 7: {{1,1}} %e A328513 11: {{3}} %e A328513 13: {{1,2}} %e A328513 17: {{4}} %e A328513 19: {{1,1,1}} %e A328513 21: {{1},{1,1}} %e A328513 23: {{2,2}} %e A328513 29: {{1,3}} %e A328513 31: {{5}} %e A328513 37: {{1,1,2}} %e A328513 39: {{1},{1,2}} %e A328513 41: {{6}} %e A328513 43: {{1,4}} %e A328513 47: {{2,3}} %e A328513 53: {{1,1,1,1}} %e A328513 57: {{1},{1,1,1}} %t A328513 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328513 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A328513 Select[Range[100],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&] %Y A328513 A subset of A005117. %Y A328513 These are Heinz numbers of the partitions counted by A304714. %Y A328513 The maximum connected squarefree divisor of n is A327398(n). %Y A328513 Cf. A056239, A112798, A286518, A302242, A304716, A305078, A305079, A327076, A328514. %K A328513 nonn %O A328513 1,2 %A A328513 _Gus Wiseman_, Oct 20 2019