This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328514 #9 Nov 19 2019 06:26:33 %S A328514 1,2,3,5,11,13,17,29,31,39,41,43,47,59,65,67,73,79,83,87,101,109,113, %T A328514 127,129,137,139,149,157,163,167,179,181,191,195,199,211,233,235,237, %U A328514 241,257,269,271,277,283,293,303,313,317,319,331,339,347,349,353,365 %N A328514 MM-numbers of connected sets of sets. %C A328514 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %F A328514 Intersection of A302494 and A305078. %e A328514 The sequence all connected set of sets together with their MM-numbers begins: %e A328514 1: {} %e A328514 2: {{}} %e A328514 3: {{1}} %e A328514 5: {{2}} %e A328514 11: {{3}} %e A328514 13: {{1,2}} %e A328514 17: {{4}} %e A328514 29: {{1,3}} %e A328514 31: {{5}} %e A328514 39: {{1},{1,2}} %e A328514 41: {{6}} %e A328514 43: {{1,4}} %e A328514 47: {{2,3}} %e A328514 59: {{7}} %e A328514 65: {{2},{1,2}} %e A328514 67: {{8}} %e A328514 73: {{2,4}} %e A328514 79: {{1,5}} %e A328514 83: {{9}} %e A328514 87: {{1},{1,3}} %t A328514 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A328514 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A328514 Select[Range[1000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&] %Y A328514 The not-necessarily-connected case is A302494. %Y A328514 BII-numbers of connected set-systems are A326749. %Y A328514 MM-numbers of connected sets of multisets are A328513. %Y A328514 Cf. A005117, A007947, A056239, A112798, A286518, A302242, A302569, A304714, A305078, A305079, A327398. %K A328514 nonn %O A328514 1,2 %A A328514 _Gus Wiseman_, Oct 20 2019