This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A328524 #31 Feb 16 2025 08:33:58 %S A328524 1,2,4,8,12,16,24,32,48,72,64,96,144,360,128,192,288,432,720,256,384, %T A328524 576,864,1440,2160,512,768,1152,1728,2592,2880,4320,10800,1024,1536, %U A328524 2304,3456,5184,5760,8640,12960,21600,75600,2048,3072,4608,6912,10368,11520 %N A328524 T(n,k) is the k-th smallest least integer of prime signatures for partitions of n into distinct parts; triangle T(n,k), n>=0, 1<=k<=A000009(n), read by rows. %H A328524 Alois P. Heinz, <a href="/A328524/b328524.txt">Rows n = 0..50, flattened</a> %H A328524 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSignature.html">Prime Signature</a> %H A328524 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %H A328524 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_signature">Prime signature</a> %H A328524 <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a> %e A328524 Triangle T(n,k) begins: %e A328524 1; %e A328524 2; %e A328524 4; %e A328524 8, 12; %e A328524 16, 24; %e A328524 32, 48, 72; %e A328524 64, 96, 144, 360; %e A328524 128, 192, 288, 432, 720; %e A328524 256, 384, 576, 864, 1440, 2160; %e A328524 512, 768, 1152, 1728, 2592, 2880, 4320, 10800; %e A328524 1024, 1536, 2304, 3456, 5184, 5760, 8640, 12960, 21600, 75600; %e A328524 ... %p A328524 b:= proc(n, i, j) option remember; `if`(i*(i+1)/2<n, [], %p A328524 `if`(n=0, [1], [map(x-> x*ithprime(j)^i, %p A328524 b(n-i, min(n-i, i-1), j+1))[], b(n, i-1, j)[]])) %p A328524 end: %p A328524 T:= n-> sort(b(n$2, 1))[]: %p A328524 seq(T(n), n=0..12); %t A328524 b[n_, i_, j_] := b[n, i, j] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Join[# * Prime[j]^i& /@ b[n - i, Min[n - i, i - 1], j + 1], b[n, i - 1, j]]]]; %t A328524 T[n_] := Sort[b[n, n, 1]]; %t A328524 Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, May 07 2020, after Maple *) %Y A328524 Column k=1-3 give: A000079, A003945 for n>2, A116453 for n>4. %Y A328524 Row sums give A332626. %Y A328524 Last elements of rows give A332644. %Y A328524 Cf. A000009, A087443 (for all partitions), A087980 (as sorted sequence). %K A328524 nonn,tabf %O A328524 0,2 %A A328524 _Alois P. Heinz_, Feb 18 2020