A328545 Number of 11-regular partitions of n (no part is a multiple of 11).
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 76, 99, 132, 171, 224, 286, 370, 468, 597, 750, 945, 1177, 1472, 1820, 2255, 2772, 3410, 4165, 5092, 6185, 7515, 9085, 10978, 13207, 15884, 19025, 22774, 27170, 32388, 38489, 45705, 54120, 64030, 75569, 89100
Offset: 0
Keywords
References
- Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:=(k,M) -> mul(1-q^(k*j),j=1..M); LRP := (L,M) -> f(L,M)/f(1,M); s := L -> seriestolist(series(LRP(L,80),q,60)); s(11);
-
Mathematica
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 11], 0, 2] ], {n, 0, 46}]
Formula
a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), set s=11. - Vaclav Kotesovec, Aug 01 2022