cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328545 Number of 11-regular partitions of n (no part is a multiple of 11).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 76, 99, 132, 171, 224, 286, 370, 468, 597, 750, 945, 1177, 1472, 1820, 2255, 2772, 3410, 4165, 5092, 6185, 7515, 9085, 10978, 13207, 15884, 19025, 22774, 27170, 32388, 38489, 45705, 54120, 64030, 75569, 89100
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRP := (L,M) -> f(L,M)/f(1,M);
    s := L -> seriestolist(series(LRP(L,80),q,60));
    s(11);
  • Mathematica
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 11], 0, 2] ], {n, 0, 46}]

Formula

a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), set s=11. - Vaclav Kotesovec, Aug 01 2022