A328546 Number of 12-regular partitions of n (no part is a multiple of 12).
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 100, 133, 173, 226, 290, 374, 475, 605, 762, 960, 1199, 1497, 1856, 2299, 2831, 3482, 4261, 5208, 6337, 7700, 9321, 11266, 13572, 16325, 19578, 23444, 27999, 33389, 39721, 47185, 55929, 66199, 78199, 92246
Offset: 0
Keywords
References
- Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
f:=(k,M) -> mul(1-q^(k*j),j=1..M); LRP := (L,M) -> f(L,M)/f(1,M); s := L -> seriestolist(series(LRP(L,80),q,60)); s(12);
-
Mathematica
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 12], 0, 2] ], {n, 0, 46}] (* Robert Price, Jul 28 2020 *)
Formula
a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), set s=12. - Vaclav Kotesovec, Aug 01 2022