cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328546 Number of 12-regular partitions of n (no part is a multiple of 12).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 100, 133, 173, 226, 290, 374, 475, 605, 762, 960, 1199, 1497, 1856, 2299, 2831, 3482, 4261, 5208, 6337, 7700, 9321, 11266, 13572, 16325, 19578, 23444, 27999, 33389, 39721, 47185, 55929, 66199, 78199, 92246
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

References

  • Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Maple
    f:=(k,M) -> mul(1-q^(k*j),j=1..M);
    LRP := (L,M) -> f(L,M)/f(1,M);
    s := L -> seriestolist(series(LRP(L,80),q,60));
    s(12);
  • Mathematica
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 12], 0, 2] ], {n, 0, 46}] (* Robert Price, Jul 28 2020 *)

Formula

a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), set s=12. - Vaclav Kotesovec, Aug 01 2022