cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328547 Number of 3-regular bipartitions of n.

This page as a plain text file.
%I A328547 #10 Oct 08 2024 11:10:06
%S A328547 1,2,5,8,16,26,44,68,108,162,245,356,521,740,1053,1468,2045,2804,3836,
%T A328547 5184,6988,9326,12409,16376,21546,28154,36674,47492,61317,78764,
%U A328547 100880,128628,163553,207134,261630,329288,413395,517316,645803,803844,998282
%N A328547 Number of 3-regular bipartitions of n.
%D A328547 Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
%F A328547 a(n) ~ exp(Pi*sqrt(8*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - _Vaclav Kotesovec_, Oct 08 2024
%p A328547 f:=(k,M) -> mul(1-q^(k*j),j=1..M);
%p A328547 LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
%p A328547 S := L -> seriestolist(series(LRBP(L,80),q,60));
%p A328547 S(3);
%t A328547 nmax = 40; CoefficientList[Series[Product[1 + x^j + x^(2*j), {j, 1, nmax}]^2, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 08 2024 *)
%Y A328547 Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
%Y A328547 Cf. A000726.
%K A328547 nonn
%O A328547 0,2
%A A328547 _N. J. A. Sloane_, Oct 19 2019