cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328548 Number of 6-regular bipartitions of n.

This page as a plain text file.
%I A328548 #8 Oct 08 2024 11:10:21
%S A328548 1,2,5,10,20,36,63,106,175,280,441,680,1034,1548,2290,3346,4840,6930,
%T A328548 9837,13844,19337,26810,36925,50530,68741,92984,125113,167490,223155,
%U A328548 295960,390825,513954,673214,878480,1142190,1479892,1911051,2459896,3156602
%N A328548 Number of 6-regular bipartitions of n.
%D A328548 Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
%F A328548 a(n) ~ 5^(1/4) * exp(Pi*sqrt(10*n)/3) / (2^(9/4) * 3^(3/2) * n^(3/4)). - _Vaclav Kotesovec_, Oct 08 2024
%p A328548 f:=(k,M) -> mul(1-q^(k*j),j=1..M);
%p A328548 LRBP := (L,M) -> (f(L,M)/f(1,M))^2;
%p A328548 S := L -> seriestolist(series(LRBP(L,80),q,60));
%p A328548 S(6);
%t A328548 nmax = 40; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k), {k, 1, nmax}]^2, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 08 2024 *)
%Y A328548 Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.
%Y A328548 Cf. A219601.
%K A328548 nonn
%O A328548 0,2
%A A328548 _N. J. A. Sloane_, Oct 19 2019